File size: 2,164 Bytes
73f7ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import load_model

model = load_model("auto_mpg_model.h5")

imputer = SimpleImputer(strategy='median')
scaler = StandardScaler()

def predict_mpg(data):
    input_data = np.array(data).reshape(1, -1)
    
    input_scaled = scaler.fit_transform(input_data)
    
    prediction = model.predict(input_scaled)
    
    return prediction[0][0]

input_data = [4, 121, 110, 2800, 15.4, 81, 3]
predicted_mpg = predict_mpg(input_data)
print("Predicted MPG:", predicted_mpg)

auto_mpg_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data"
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']
data = pd.read_csv(auto_mpg_data_url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True)

data = data.dropna()

X = data.drop('MPG', axis=1)
y = data['MPG']

imputer = SimpleImputer(strategy='median')
X_imputed = imputer.fit_transform(X)

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_imputed)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

model = Sequential([
    Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
    Dense(32, activation='relu'),
    Dense(1)
])

model.compile(optimizer='adam', loss='mean_squared_error')

model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=2)

model.save("auto_mpg_model.h5")

model = load_model("auto_mpg_model.h5")

imputer = SimpleImputer(strategy='median')
scaler = StandardScaler()

def predict_mpg(data):
    input_data = np.array(data).reshape(1, -1)
    
    input_scaled = scaler.fit_transform(input_data)
    
    prediction = model.predict(input_scaled)
    
    return prediction[0][0]

input_data = input()
predicted_mpg = predict_mpg(input_data)
print("Predicted MPG:", predicted_mpg)