File size: 17,210 Bytes
c847f1a
 
 
 
 
 
 
 
 
256f1ed
c847f1a
 
 
f0b5101
c847f1a
 
 
256f1ed
c847f1a
 
 
 
 
 
 
 
 
256f1ed
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94aa02
 
 
 
04bb229
 
 
 
f94aa02
c847f1a
 
 
 
 
 
04bb229
 
 
 
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94aa02
 
c847f1a
 
 
 
 
 
 
 
 
b785c42
 
 
c847f1a
cf5d1d7
c847f1a
 
 
 
 
f94aa02
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb229
c847f1a
 
 
 
 
 
d76e54c
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
d76e54c
c847f1a
 
d76e54c
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d76e54c
c847f1a
 
 
 
d76e54c
 
c847f1a
 
d76e54c
 
 
 
 
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d76e54c
c847f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
---
title: "SPIDER-web"
author: "Cao Lab"
server: shiny
format: 
  dashboard:
    logo: https://ZhengTiger.github.io/picx-images-hosting/PFCapp/Logo-circle.7sn4nqapcl.png
    nav-buttons:
      - icon: github
        href: https://github.com/ZhengTiger/SPIDER-Seq
---
# Home

<p style="font-size: 50px; font-weight: bold; text-align: center;">Modular organization of mouse prefrontal cortex subnetwork revealed by spatial single-cell multi-omic analysis of SPIDER-Seq</p>

<br>

<img src="https://ZhengTiger.github.io/picx-images-hosting/PFCapp/Figure1A.2doqkri93w.webp" style="width: 100%;">

<br>
<br>

<p style="font-size: 30px; font-weight: bold; text-align: left;">
Summary
</p>

<p style="font-size: 20px; text-align: justify;">
Deciphering the connectome, transcriptome and spatial-omics integrated multi-modal brain atlas and the underlying organization principles remains a great challenge. We developed a cost-effective Single-cell Projectome-transcriptome In situ Deciphering Sequencing (SPIDER-Seq) technique by combining viral barcoding tracing with single-cell sequencing and spatial-omics. This empowers us to delineate a comprehensive integrated single-cell spatial molecular, cellular and projectomic atlas of mouse prefrontal cortex (PFC). The projectomic and transcriptomic cell clusters display distinct modular organization principles, but are coordinately configured in the PFC. The projection neurons gradiently occupied different territories in the PFC aligning with their wiring patterns. Importantly, they show higher co-projection probability to the downstream nuclei with reciprocal circuit connections. Moreover, we integrated projectomic atlas with their distinct spectrum of neurotransmitter/neuropeptide and the receptors-related gene profiles and depicted PFC neural signal transmission network. By which, we uncovered potential mechanisms underlying the complexity and specificity of neural transmission. Finally, we predicted neuron projections with high accuracy by combining gene profiles and spatial information via machine learning. This study facilitates our understanding of brain multi-modal network and neural computation.
</p>


<br>

<p style="font-size: 30px; font-weight: bold; text-align: left;">
Interactively exploring our data
</p>

<p style="font-size: 20px; font-weight: bold; text-align: left;">
scRNAseq
</p>

<p style="font-size: 20px; text-align: justify;">
Our scRNAseq dataset sequenced the PFC of 3 mice. It contains the transcriptome of mouse PFC and the projectome information of 24 PFC targets. Users can browse the following content through the scRNAseq page:
</p>

- scRNAseq Clustering: Select different resolutions to view cell clusters on UMAP
- Gene Expression: Select different genes to view their expression on UMAP
- Barcode Expression: Select different projections to view their expression on UMAP
- Barcode Cell Numbers: View PFC projection cell numbers in different cell clusters



<p style="font-size: 20px; font-weight: bold; text-align: left;">
Spatial data
</p>

<p style="font-size: 20px; text-align: justify;">
Our spatial dataset sequenced 36 slices of mouse PFC. It contains 32 genes and 15 targets information of mouse PFC. Users can browse the following content through the spatial page:
</p>

- Spatial Clustering: Select different resolutions to view the spatial distribution of cell clusters
- Spatial Gene Expression: Select different genes to view their spatial expression
- Spatial Barcode Expression: Select different projections to view their spatial expression
- Barcode Spatial Distribution: View the spatial distribution of PFC projection neurons along anterior-posterior and ventralis-dorsalis axes



<p style="font-size: 20px; font-weight: bold; text-align: left;">
3D
</p>

<p style="font-size: 20px; text-align: justify;">
3D interactive visualization of mouse PFC. Users can browse the following content through the 3D page:
</p>

- Transcriptome 3D Visualization: Select different transcriptome cell clusters to interactively view them in 3D
- Projectome 3D Visualization: Select different Projectome targets to interactively view them in 3D


<p style="font-size: 20px; font-weight: bold; text-align: left;">
Download
</p>

<p style="font-size: 20px; text-align: justify;">
Download the raw and processed data from this study.
</p>


```{r}
#| context: setup
#| warning: false
#| message: false

library(ggplot2)
library(Seurat)
library(shiny)
library(rgl)
library(ggdark)
library(viridis)
library(dplyr)

source("R/Palettes.R")
source('R/includes.R')
Adult.Ex <- readRDS('data/Adult.Ex.rds')
sp.PFC <- readRDS('data/sp.PFC.rds')
sp.PFC$PTi[is.na(sp.PFC$PTi)] <- 0
sp.PFC$ITi_D[is.na(sp.PFC$ITi_D)] <- 0
sp.PFC$ITi_V[is.na(sp.PFC$ITi_V)] <- 0
sp.PFC$ITc[is.na(sp.PFC$ITc)] <- 0
sp.PFC$Proj_module[which(sp.PFC$Proj_module=="ITi-D")] <- "ITi-M1"
sp.PFC$Proj_module[which(sp.PFC$Proj_module=="ITi-V")] <- "ITi-M2"
sp.PFC$Proj_module[which(sp.PFC$Proj_module=="ITc")] <- "ITc-M3"
colnames(sp.PFC@meta.data)[match(c("ITi_D","ITi_V","ITc"),colnames(sp.PFC@meta.data))] <- c("ITi-M1","ITi-M2","ITc-M3")


clean_cells <- colnames(Adult.Ex)[!(
  (Adult.Ex$Ex_subtype %in% c("CT","NP") & Adult.Ex$BC_num>0) | 
  (Adult.Ex$sample %in% c("Adult2","Adult3") & Adult.Ex$Ex_subtype=="PT" & Adult.Ex$BC_num>0)
  )]
Adult.Ex.clean <- subset(Adult.Ex, cells = clean_cells)
Adult.Ex.clean$Proj_module[which(Adult.Ex.clean$Proj_module=="ITi-D")] <- "ITi-M1"
Adult.Ex.clean$Proj_module[which(Adult.Ex.clean$Proj_module=="ITi-V")] <- "ITi-M2"
Adult.Ex.clean$Proj_module[which(Adult.Ex.clean$Proj_module=="ITc")] <- "ITc-M3"
colnames(Adult.Ex.clean@meta.data)[match(c("ITi_D_score", "ITi_V_score", "ITc_score", "PTi_score"),colnames(Adult.Ex.clean@meta.data))] <- c("ITi-M1", "ITi-M2","ITc-M3","PTi")

options(rgl.useNULL = TRUE)
```





# scRNAseq {scrolling="true"}

## {.sidebar}

```{r}
selectInput('cluster', 'Select Cluster', c("SubType_Layer","SubType"))
```

```{r}
selectInput('gene', 'Select Gene', rownames(Adult.Ex),
            selected = "Cux2")
```

```{r}
Barcode <- c(
  "ITi-M1", "ITi-M2", "ITc-M3", "PTi",
  'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
  'BLA-I','ACB-I','ENTl-I','AId-I','ECT-I',
  'ACB-C','PL-C','ECT-C','ENTl-C',
  'BLA-C','CP-C','AId-C','RSP-C',
  'MD-I','RE-I','DR-I','VTA-I','LHA-I','SC-I')
selectInput('target', 'Select Target', Barcode, selected = "CP-I")
```


## Column

### Row

#### Column

```{r}
plotOutput('cluster_plot')
```

#### Column

```{r}
plotOutput('gene_plot')
```

### Row

#### Column

```{r}
plotOutput('target_plot')
```

#### Column

```{r}
plotOutput('target_bar_plot')
```


```{r}
#| context: server

output$cluster_plot <- renderPlot({
  DimPlot(
    Adult.Ex,
    reduction = 'umap',
    group.by = input$cluster,
    cols = col_cluster[[input$cluster]],
    label = T
  ) +
    coord_fixed()
})

output$gene_plot <- renderPlot({
  FeaturePlot(
    Adult.Ex,
    features = input$gene) +
    coord_fixed()
})

output$target_plot <- renderPlot({
  Barcode <- c(
    "ITi-M1", "ITi-M2","ITc-M3","PTi",
    'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
    'BLA-I','ACB-I','ENTl-I','AId-I','ECT-I',
    'ACB-C','PL-C','ECT-C','ENTl-C',
    'BLA-C','CP-C','AId-C','RSP-C',
    'MD-I','RE-I','DR-I','VTA-I','LHA-I','SC-I'
    )
  seu <- Adult.Ex.clean
  seu@meta.data[,Barcode][is.na(seu@meta.data[,Barcode])] <- 0
  FeaturePlot(
    seu, features = input$target, order = T) +
    coord_fixed()
})

output$target_bar_plot <- renderPlot({
  seu <- Adult.Ex.clean
  if (input$target %in% c("ITi-M1", "ITi-M2","ITc-M3","PTi")){
    df <- as.data.frame(table(seu@meta.data[,input$cluster][which(seu$Proj_module==input$target)]))
  }else{
    df <- as.data.frame(table(seu@meta.data[,input$cluster][which(seu@meta.data[,input$target]>0)]))
  }
  colnames(df) <- c("Celltypes","Cellnum")
  
  ggplot(df, aes(x=Celltypes, y=Cellnum, fill=Celltypes)) +
    geom_col() +
    scale_fill_manual(values = col_cluster[[input$cluster]]) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 25, hjust = 1),
          plot.title = element_text(hjust = 0.5)) +
    labs(title = paste("PFC β†’ ",input$target," cell numbers in different cell type",
                       sep=""))
})
```





# Spatial {scrolling="true"}

## {.sidebar}

```{r}
selectInput('sp_slice', 'Select Slice', unique(sp.PFC$slice), 
            selected = "IT_slice_10")
```

```{r}
selectInput('sp_cluster', 'Select Cluster', c("SubType_Layer","SubType"))
```

```{r}
selectInput('sp_gene', 'Select Gene', rownames(sp.PFC),
            selected = "Cux2")
```

```{r}
sp_Barcode <- c(
  "ITi-M1", "ITi-M2","ITc-M3","PTi",
  'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
  'BLA-I','ACB-I','AId-I','ECT-I',
  'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
  'LHA-I')
selectInput('sp_target', 'Select Target', sp_Barcode)
```


## Column

### Row

#### Column

```{r}
#| fig-width: 10

plotOutput('sp_cluster_plot')
```

#### Column

```{r}
#| fig-width: 10

plotOutput('sp_gene_plot')
```

### Row

#### Column

```{r}
#| fig-width: 10

plotOutput('sp_target_plot')
```

#### Column

```{r}
#| fig-width: 10

plotOutput('sp_target_line_plot')
```

```{r}
#| context: server

output$sp_cluster_plot <- renderPlot({
  df <- data.frame(
    x = sp.PFC$ML_new[sp.PFC$slice==input$sp_slice],
    y = sp.PFC$DV_new[sp.PFC$slice==input$sp_slice],
    type = sp.PFC@meta.data[sp.PFC$slice==input$sp_slice, input$sp_cluster]
  )
  ggplot(df, aes(x=x, y=y, color=type)) +
    geom_point(size=1) +
    scale_color_manual(values = col_cluster[[input$sp_cluster]]) +
    labs(title = paste(input$slice,'Cell types in spatial')) +
    guides(color=guide_legend(nrow = 2, byrow = TRUE, reverse = T,
                              override.aes = list(size=2))) +
    coord_fixed() +
    ggdark::dark_theme_void() +
    theme(plot.title = element_text(size = 20, hjust = 0.5),
          legend.position = 'bottom', legend.title=element_blank(),
          legend.text = element_text(size=10))
})

output$sp_gene_plot <- renderPlot({
  df <- data.frame(
    X = sp.PFC$ML_new,
    Y = sp.PFC$DV_new,
    Zscore = scale(log1p(sp.PFC@assays$RNA@counts[input$sp_gene,]))
    )
  df <- df[which(sp.PFC$slice==input$sp_slice),]
  df$Zscore[df$Zscore<0] <- 0
  df$Zscore[df$Zscore>3] <- 3
  df <- df[order(df$Zscore),]
  ggplot(df,aes(x=X,y=Y)) +
    geom_point(aes(colour=Zscore), size=1) +
    scale_color_gradientn(colours = viridis(n = 256, option = "D", direction = 1),
                          limits = c(0,3)) +
    ggdark::dark_theme_void() +
    labs(title = input$sp_gene) +
    theme(plot.title = element_text(size = 20, hjust = 0.5),
          legend.position = 'bottom') +
    coord_fixed()
})

output$sp_target_plot <- renderPlot({
  df <- data.frame(
    X = sp.PFC$ML_new,
    Y = sp.PFC$DV_new,
    Zscore = scale(log1p(sp.PFC@meta.data[,input$sp_target]))
  )
  df <- df[which(sp.PFC$slice==input$sp_slice),]
  df$Zscore[df$Zscore<0] <- 0
  df$Zscore[df$Zscore>3] <- 3
  df <- df[order(df$Zscore),]
  ggplot(df, aes(x=X,y=Y)) +
    geom_point(aes(colour=Zscore), size=1) +
    scale_color_gradientn(colours = viridis(n = 256, option = "E", direction = 1)) +
    ggdark::dark_theme_void() +
    labs(title = input$sp_target) +
    theme(plot.title = element_text(size = 20, hjust = 0.5),
          legend.position = 'bottom') +
    coord_fixed()
})

output$sp_target_line_plot <- renderPlot({
  # AP
  seu <- subset(sp.PFC, cells=colnames(sp.PFC)[which(sp.PFC$ABA_hemisphere=="Left")])
  slice <- unique(seu$slice)
  df <- data.frame('slice'=slice)
  for (i in 1:length(slice)){
    if (input$sp_target %in% c("ITi-M1","ITi-M2","ITc-M3","PTi")){
      df$cellnum[i] <- length(which(seu$slice==slice[i] & seu$Proj_module==input$sp_target))/length(which(seu$slice==slice[i] & seu$BC_num>0))
    }else{
      df$cellnum[i] <- length(which(seu$slice==slice[i] & seu@meta.data[,input$sp_target]>0))/length(which(seu$slice==slice[i] & seu$BC_num>0))
    }
  }
  df$x <- c(1:36)
  p1 <- ggplot(df, aes(x=x, y=cellnum)) +
    geom_point(alpha=0.5, size=3, color=col_subtype_target[input$sp_target]) +
    geom_smooth(se = F, linewidth=1.5, color=col_subtype_target[input$sp_target]) +
    theme_bw() +
    scale_x_continuous(breaks = seq(0,35,5)) +
    theme(text = element_text(size=15), 
          plot.title = element_text(size = 20, hjust = 0.5)) +
    labs(x='A β†’ P',y='Cell proportion')
  
  # DV
  sp_Barcode <- c("ITi-M1","ITi-M2","ITc-M3", "PTi",
               'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
               'BLA-I','ACB-I','AId-I','ECT-I',
               'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
               'LHA-I')
  seu <- subset(sp.PFC, cells=colnames(sp.PFC)[which(sp.PFC$ABA_hemisphere=="Left")])
  bc_slice <- seu@meta.data[,c(sp_Barcode, 'Y','BC_num')]
  bc_slice <- 
    bc_slice |>
    mutate(bin = cut(Y, breaks = 36))
  bin <- sort(unique(bc_slice$bin))
  bc_slice$bin_index <- match(bc_slice$bin, bin)
  df <- data.frame('bin_index'=c(1:36))
  for (i in 1:36){
    df$cellnum[i] <- length(which(bc_slice$bin_index==i &
                                  bc_slice[,input$sp_target]>0))/
    length(which(bc_slice$bin_index==i & bc_slice$BC_num>0))
  }
  df$x <- c(1:36)
  p2 <- ggplot(df, aes(x=x, y=cellnum)) +
    geom_point(alpha=0.5, size=3, color=col_subtype_target[input$sp_target]) +
    geom_smooth(se = F, linewidth=1.5, color=col_subtype_target[input$sp_target]) +
    theme_bw() +
    scale_x_continuous(breaks = seq(0,35,5)) +
    theme(text = element_text(size=15), 
          plot.title = element_text(size = 20, hjust = 0.5)) +
    labs(x='V β†’ D',y='Cell proportion')
  p1/p2
})
```






# 3D

## {.sidebar}

```{r}
sp_Barcode <- c("ITi-M1","ITi-M2","ITc-M3", "PTi",
                'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
                'BLA-I','ACB-I','AId-I','ECT-I',
                'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
                'LHA-I')
waiter::use_waiter()
selectInput('subtype_3d', 'Select SubType', sort(unique(sp.PFC$SubType)))
selectInput('target_3d', 'Select Target', sp_Barcode, selected = "PTi")
```


## Column

```{r}
rglwidgetOutput('spatial_subtype', width = "100%")
```


```{r}
#| context: server

observeEvent(input$subtype_3d,{
  waiter::Waiter$new(id = "spatial_subtype", color="black")$show()
  output$spatial_subtype <- renderRglwidget({
    df_plot <- sp.PFC@meta.data[which(sp.PFC$SubType == input$subtype_3d),]
    
    open3d()
    bg3d(color = "black")
    par3d(userMatrix = rotationMatrix(-pi/6, -1, 1, 0), zoom = 0.6)
    acr.list <- c("MOs","PL","ORBm","ACAd","ILA","DP","ACAv")
    
    for(acr in acr.list){
      mesh <- mesh3d.allen.annot.from.id(get.id.from.acronym(acr))
      col <- "lightgray"
      shade3d(mesh, col = col, material = list(lit=FALSE), alpha = 0.1)
    }
    
    spheres3d(x = df_plot$ML_new, 
              y = df_plot$DV_new,
              z = df_plot$AP_new,
              col = col_subtype_target[input$subtype_3d], radius=0.01, alpha=1)
    rglwidget()
  })
})


observeEvent(input$target_3d,{
  waiter::Waiter$new(id = "spatial_subtype", color="black")$show()
  output$spatial_subtype <- renderRglwidget({
    if (input$target_3d %in% c("ITi-M1","ITi-M2","ITc-M3", "PTi")){
      df_plot <- sp.PFC@meta.data[which(sp.PFC$Proj_module==input$target_3d),]
    }else{
      df_plot <- sp.PFC@meta.data[which(sp.PFC@meta.data[,input$target_3d] > 0),]
    }
    
    open3d()
    bg3d(color = "black")
    par3d(userMatrix = rotationMatrix(-pi/6, -1, 1, 0), zoom = 0.6)
    acr.list <- c("MOs","PL","ORBm","ACAd","ILA","DP","ACAv")
    
    for(acr in acr.list){
      mesh <- mesh3d.allen.annot.from.id(get.id.from.acronym(acr))
      col <- "lightgray"
      shade3d(mesh, col = col, material = list(lit=FALSE), alpha = 0.1)
    }
    
    spheres3d(x = df_plot$ML_new, 
              y = df_plot$DV_new,
              z = df_plot$AP_new,
              col = col_subtype_target[input$target_3d], radius=0.01, alpha=1)
    rglwidget()
  })
})
```




# Download

<p style="font-size: 20px; text-align: justify;">
The raw single cell RNA-seq data are available from GEO (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE273066">GSE273066</a>).
</p>

<p style="font-size: 20px; text-align: justify;">
The raw image data for this study are available via Hugging Face at <a href="https://huggingface.co/TigerZheng/SPIDER-STdata">TigerZheng/SPIDER-STdata</a>. You can download and unzip the .zip file and then use <a href="https://github.com/hms-dbmi/viv">viv</a> to visualize our raw data.
An example: <a href="https://avivator.gehlenborglab.org/?image_url=https://huggingface.co/TigerZheng/SPIDER-STdata/resolve/main/IT_slice_36_reordered.ome.tiff">IT_slice_36</a>.</p>

<p style="font-size: 20px; text-align: justify;">
The processed data can be downloaded here:</p>

- All cells data: <a href="https://huggingface.co/spaces/TigerZheng/SPIDER-web/resolve/main/data/all.Adult.rds?download=true">all.Adult.rds</a>
- Excitatory data: <a href="https://huggingface.co/spaces/TigerZheng/SPIDER-web/resolve/main/data/Adult.Ex.rds?download=true">Adult.Ex.rds</a>
- Spatial data: <a href="https://huggingface.co/spaces/TigerZheng/SPIDER-web/resolve/main/data/sp.PFC.rds?download=true">sp.PFC.rds</a>