Spaces:
Sleeping
Sleeping
TEST_7
#8
by
ThieLin
- opened
app.py
CHANGED
@@ -1,61 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
from sentence_transformers import SentenceTransformer, util
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
def get_zephyr_response(question):
|
15 |
-
messages = [
|
16 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
17 |
-
{"role": "user", "content": question}
|
18 |
-
]
|
19 |
-
response = chat_model_zephyr.chat_completion(
|
20 |
-
messages,
|
21 |
-
max_tokens=256,
|
22 |
-
temperature=0.7,
|
23 |
-
top_p=0.95,
|
24 |
-
)
|
25 |
-
return response.choices[0].message.content.strip()
|
26 |
-
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
def compare_answers(answer1, answer2):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
similarity = compare_answers(answer_zephyr, answer_gpt2)
|
44 |
|
45 |
-
|
46 |
-
f"🧠 Zephyr-7b:\n{answer_zephyr}\n\n"
|
47 |
-
f"🤖 GPT-2:\n{answer_gpt2}\n\n"
|
48 |
-
f"🔍 Similaridade Semântica: **{similarity}**"
|
49 |
-
)
|
50 |
|
|
|
51 |
|
52 |
with gr.Blocks() as demo:
|
53 |
-
gr.Markdown("
|
54 |
-
|
55 |
-
|
56 |
output = gr.Textbox(label="Respostas e Similaridade", lines=15)
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
|
5 |
+
class ModelComparator:
|
6 |
+
def __init__(self):
|
7 |
+
# Modelo de QA (mais rápido e leve)
|
8 |
+
self.qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
9 |
+
# Modelo de geração de texto simples
|
10 |
+
self.text_gen_pipeline = pipeline("text-generation", model="gpt2", max_new_tokens=50)
|
11 |
+
# Modelo para embeddings e similaridade
|
12 |
+
self.sim_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def get_qa_answer(self, question, context=None):
|
15 |
+
# Se não passar contexto, responde "não sei"
|
16 |
+
if context is None:
|
17 |
+
return "No context provided for QA model."
|
18 |
+
try:
|
19 |
+
result = self.qa_pipeline(question=question, context=context)
|
20 |
+
return result['answer']
|
21 |
+
except Exception as e:
|
22 |
+
return f"Error in QA pipeline: {e}"
|
23 |
|
24 |
+
def get_text_gen_answer(self, prompt):
|
25 |
+
try:
|
26 |
+
generated = self.text_gen_pipeline(prompt)[0]['generated_text']
|
27 |
+
# O GPT2 gera o texto incluindo o prompt, vamos remover o prompt para deixar só resposta
|
28 |
+
answer = generated[len(prompt):].strip()
|
29 |
+
return answer if answer else generated.strip()
|
30 |
+
except Exception as e:
|
31 |
+
return f"Error in text generation pipeline: {e}"
|
32 |
|
33 |
+
def compare_answers(self, answer1, answer2):
|
34 |
+
emb1 = self.sim_model.encode(answer1, convert_to_tensor=True)
|
35 |
+
emb2 = self.sim_model.encode(answer2, convert_to_tensor=True)
|
36 |
+
similarity = util.cos_sim(emb1, emb2).item()
|
37 |
+
return round(similarity, 3)
|
38 |
|
39 |
+
def respond(self, question, context):
|
40 |
+
qa_answer = self.get_qa_answer(question, context)
|
41 |
+
gen_answer = self.get_text_gen_answer(question)
|
42 |
+
similarity = self.compare_answers(qa_answer, gen_answer)
|
43 |
|
44 |
+
return (f"Model QA answer:\n{qa_answer}\n\n"
|
45 |
+
f"Model GPT-2 generated answer:\n{gen_answer}\n\n"
|
46 |
+
f"Semantic similarity score: {similarity}")
|
|
|
47 |
|
48 |
+
# Interface Gradio
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
model_comparator = ModelComparator()
|
51 |
|
52 |
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("## Comparador de respostas entre dois modelos locais (CPU)")
|
54 |
+
question_input = gr.Textbox(label="Pergunta")
|
55 |
+
context_input = gr.Textbox(label="Contexto para o modelo de QA (opcional)", lines=5)
|
56 |
output = gr.Textbox(label="Respostas e Similaridade", lines=15)
|
57 |
+
btn = gr.Button("Comparar")
|
58 |
|
59 |
+
btn.click(
|
60 |
+
fn=model_comparator.respond,
|
61 |
+
inputs=[question_input, context_input],
|
62 |
+
outputs=output
|
63 |
+
)
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
demo.launch()
|