Files changed (1) hide show
  1. app.py +64 -46
app.py CHANGED
@@ -1,64 +1,82 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
4
+ from sentence_transformers import SentenceTransformer, util
5
 
6
+ # Carregar modelos
7
+ model_name = "deepset/roberta-base-squad2"
8
+ qa_pipeline = pipeline('question-answering', model=model_name, tokenizer=model_name)
9
+ chat_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+ embed_model = SentenceTransformer('all-MiniLM-L6-v2')
11
 
12
 
13
+ class MultiModelQA:
14
+ def __init__(self, qa_pipeline, chat_client, embed_model):
15
+ self.qa_pipeline = qa_pipeline
16
+ self.chat_client = chat_client
17
+ self.embed_model = embed_model
 
 
 
 
18
 
19
+ def answer_with_qa_model(self, question, context):
20
+ return self.qa_pipeline({'question': question, 'context': context})['answer']
 
 
 
21
 
22
+ def answer_with_chat_model(self, question, system_message, max_tokens, temperature, top_p):
23
+ messages = [
24
+ {"role": "system", "content": system_message},
25
+ {"role": "user", "content": question}
26
+ ]
27
+ response = ""
28
+ for msg in self.chat_client.chat_completion(
29
+ messages,
30
+ max_tokens=max_tokens,
31
+ stream=True,
32
+ temperature=temperature,
33
+ top_p=top_p,
34
+ ):
35
+ token = msg.choices[0].delta.content
36
+ response += token
37
+ return response
38
 
39
+ def comparar_semanticamente(self, resp1, resp2):
40
+ emb1 = self.embed_model.encode(resp1, convert_to_tensor=True)
41
+ emb2 = self.embed_model.encode(resp2, convert_to_tensor=True)
42
+ similarity = util.cos_sim(emb1, emb2).item()
43
+ return similarity
44
 
 
 
 
 
 
 
 
 
45
 
46
+ multiqa = MultiModelQA(qa_pipeline, chat_client, embed_model)
 
47
 
48
 
49
+ def responder_e_comparar(question, context, system_message, max_tokens, temperature, top_p):
50
+ qa_resp = multiqa.answer_with_qa_model(question, context)
51
+ chat_resp = multiqa.answer_with_chat_model(question, system_message, max_tokens, temperature, top_p)
52
+ similaridade = multiqa.comparar_semanticamente(qa_resp, chat_resp)
53
+
54
+ result = f"""### Resposta do modelo QA:
55
+ {qa_resp}
56
+
57
+ ### Resposta do modelo Chat:
58
+ {chat_resp}
59
+
60
+ ### Similaridade semântica (coseno): {similaridade:.2%}
61
  """
62
+ return result
63
+
64
+
65
+ # Interface Gradio
66
+ demo = gr.Interface(
67
+ fn=responder_e_comparar,
68
+ inputs=[
69
+ gr.Textbox(label="Pergunta"),
70
+ gr.Textbox(label="Contexto"),
71
+ gr.Textbox(value="Você é um assistente útil.", label="Mensagem do sistema"),
72
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Máximo de tokens"),
73
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperatura"),
74
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
 
 
75
  ],
76
+ outputs=gr.Markdown(),
77
+ title="Comparador de Respostas de Modelos",
78
+ description="Compara as respostas de um modelo de QA e um modelo de chat (Zephyr-7B) e calcula a similaridade semântica entre elas."
79
  )
80
 
 
81
  if __name__ == "__main__":
82
  demo.launch()