Spaces:
Starting
on
Zero
Starting
on
Zero
File size: 10,981 Bytes
c2f0237 fc6433a c2f0237 1b86c52 2393a98 c2f0237 e73d18e 2393a98 c2f0237 e73d18e c2f0237 1b86c52 c2f0237 e73d18e 1b86c52 c2f0237 1b86c52 c2f0237 2393a98 c2f0237 e73d18e c2f0237 e73d18e 0ce7f80 2393a98 e73d18e ef904ea e73d18e 1b86c52 c2f0237 2393a98 c2f0237 2393a98 c2f0237 e73d18e c2f0237 e73d18e 1b86c52 c2f0237 1b86c52 c2f0237 e73d18e c2f0237 e73d18e c2f0237 e73d18e c2f0237 1b86c52 c2f0237 e73d18e c2f0237 e73d18e c2f0237 e73d18e c2f0237 e73d18e c2f0237 e73d18e 1b86c52 c2f0237 1b86c52 c2f0237 e73d18e c2f0237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# Loomvale Image Lab β Anime Cinematic (5 scenes -> 5 images)
import os, io, re, json, asyncio, tempfile
from typing import List, Tuple
import gradio as gr
import spaces # IMPORTANT: import before torch on ZeroGPU
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import gspread
from google.oauth2.service_account import Credentials
from huggingface_hub import HfApi
# =========================
# Config / Secrets
# =========================
SHEET_ID = os.getenv("SHEET_ID")
SHEET_NAME = os.getenv("SHEET_NAME", "Pipeline")
GOOGLE_CREDENTIALS_JSON = os.getenv("GOOGLE_CREDENTIALS_JSON")
HF_TOKEN = os.getenv("HF_TOKEN")
SPACE_ID = "Theloomvale/loomvale-image-lab" # public repo id of this Space
# Sheet columns (exact headers)
COL_AMBIENCE = "ImagePrompt_Ambience"
COL_SCENES = "ImagePrompt_Scenes"
COL_LINKS_OUT = "AI generated images"
COL_ASSISTANT = "Assistant"
# Default model choices (anime model first)
DEFAULT_MODEL = "Linaqruf/animagine-xl-3.1"
MODEL_CHOICES = [
"Linaqruf/animagine-xl-3.1",
"stabilityai/stable-diffusion-xl-base-1.0",
"SG161222/Realistic_Vision_V5.1_noVAE",
]
NEGATIVE_DEFAULT = (
"text watermark, signature, logo, jpeg artifacts, lowres, blurry, oversharp, noisy, "
"deformed, mutated, extra fingers, extra limbs, bad hands, bad anatomy, "
"crooked lines, harsh outlines, messy typography"
)
# =========================
# Google Sheets helpers
# =========================
def _gc():
if not SHEET_ID or not GOOGLE_CREDENTIALS_JSON:
raise RuntimeError("SHEET_ID and GOOGLE_CREDENTIALS_JSON must be set in Space secrets.")
info = json.loads(GOOGLE_CREDENTIALS_JSON)
creds = Credentials.from_service_account_info(
info, scopes=["https://www.googleapis.com/auth/spreadsheets"]
)
return gspread.authorize(creds)
def _ws():
sh = _gc().open_by_key(SHEET_ID)
try:
return sh.worksheet(SHEET_NAME)
except Exception:
return sh.sheet1
def _header_index(ws, header: str) -> int:
headers = ws.row_values(1)
if header not in headers:
raise RuntimeError(f"Missing column header in sheet: {header}")
return headers.index(header) + 1 # 1-based
def pull_prompt_from_row(row_number: int) -> Tuple[str, str]:
"""Returns (ambience, scenes_block) from the sheet row (1-based)."""
ws = _ws()
records = ws.get_all_records()
if row_number < 1 or row_number > len(records):
raise ValueError(f"Row {row_number} is out of range (1β{len(records)}).")
row = records[row_number - 1]
amb = (row.get(COL_AMBIENCE) or "").strip()
scn = (row.get(COL_SCENES) or "").strip()
return amb, scn
def write_links_to_row(row_number: int, links: List[str], mark_done: bool = True):
ws = _ws()
col_links = _header_index(ws, COL_LINKS_OUT)
ws.update_cell(row_number, col_links, ", ".join(links))
if mark_done:
col_asst = _header_index(ws, COL_ASSISTANT)
ws.update_cell(row_number, col_asst, "Done")
# =========================
# Prompt parsing / building
# =========================
COLOR_RE = re.compile(r"\(Color Theme:\s*([^)]+)\)", re.IGNORECASE)
SCENE_SPLIT_RE = re.compile(r"(?=^Scene\s*\d+\s*[-β])", re.IGNORECASE | re.MULTILINE)
def parse_color(ambience: str) -> str:
m = COLOR_RE.search(ambience or "")
return (m.group(1).strip() if m else "").strip()
def split_scenes(scenes_block: str) -> List[str]:
"""Splits your multi-scene block into a list of per-scene text chunks."""
if not scenes_block.strip():
return []
chunks = SCENE_SPLIT_RE.split(scenes_block.strip())
chunks = [c.strip() for c in chunks if c.strip()]
return chunks[:5] # we only need 5
def anime_style_preset(ambience: str, scene_chunk: str) -> str:
"""
Builds a strong anime/manga cinematic prompt for a single scene.
Uses color theme if present and merges ambience + scene content.
"""
color = parse_color(ambience)
palette_hint = f"limited palette, monochrome tint ({color})" if color else "limited palette, monochrome tint"
base_style = (
"anime cinematic still, manga panel composition, soft watercolor shading, fine grain, "
"clean lineart, gentle halftone texture, subtle film look, cozy lo-fi tone, "
"speech bubbles integrated, panel captions integrated, text shapes (NOT readable words), "
"East Asian character design, cinematic intimacy, shallow depth of field, "
f"{palette_hint}"
)
# Keep ambience body (style/tone paragraph) but remove explicit (Color Theme: ...)
ambience_body = COLOR_RE.sub("", ambience).strip()
return (
f"{base_style}\n\n"
f"Global ambience: {ambience_body}\n\n"
f"Scene details: {scene_chunk}\n"
"Render as one cohesive illustration."
)
# =========================
# Pipeline / ZeroGPU
# =========================
_pipe_cache = {}
_hf_api = HfApi(token=HF_TOKEN) if HF_TOKEN else None
def _get_pipe(model_name: str) -> DiffusionPipeline:
device = "cuda" if torch.cuda.is_available() else "cpu"
key = (model_name, device)
if key not in _pipe_cache:
dtype = torch.float16 if device == "cuda" else torch.float32
pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=dtype)
pipe.to(device)
pipe.enable_attention_slicing()
_pipe_cache[key] = pipe
return _pipe_cache[key]
@spaces.GPU
async def generate_one(
model_name: str,
prompt: str,
negative: str,
width: int,
height: int,
steps: int,
cfg: float,
seed: int,
) -> Image.Image:
pipe = _get_pipe(model_name)
if seed == -1:
seed = int(torch.seed())
generator = torch.Generator(device=pipe.device).manual_seed(int(seed))
# run in a thread to avoid blocking the event loop
result = await asyncio.to_thread(
pipe,
prompt=prompt,
negative_prompt=negative,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=int(width),
height=int(height),
generator=generator,
)
return result.images[0]
async def generate_five(
model_name: str,
ambience: str,
scenes_block: str,
negative: str,
width: int,
height: int,
steps: int,
cfg: float,
seed: int,
) -> List[Image.Image]:
scenes = split_scenes(scenes_block)
if not scenes:
# fallback to 5 copies of ambience if scenes are missing
scenes = [f"Scene {i+1}: (no scene provided) intimate vignette." for i in range(5)]
prompts = [anime_style_preset(ambience, sc) for sc in scenes]
# Make 5 tasks (one per scene). Use fixed seeds if user provided; else unique.
seeds = [(seed if seed != -1 else int(torch.seed())) + i for i in range(5)]
tasks = [
generate_one(model_name, prompts[i], negative, width, height, steps, cfg, seeds[i])
for i in range(5)
]
return await asyncio.gather(*tasks)
# =========================
# Persist results to Space
# =========================
def persist_images(images: List[Image.Image], row_number: int) -> List[str]:
"""Uploads images into the Space repo and returns URL list."""
if not _hf_api:
return []
urls = []
for i, img in enumerate(images, start=1):
path = f"outputs/row-{row_number}/img-{i}.png"
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
img.save(tmp.name, format="PNG")
_hf_api.upload_file(
path_or_fileobj=tmp.name,
path_in_repo=path,
repo_id=SPACE_ID,
repo_type="space",
)
urls.append(f"https://huggingface.co/spaces/{SPACE_ID}/resolve/main/{path}")
return urls
# =========================
# Gradio UI
# =========================
def ui_pull(row):
try:
amb, scn = pull_prompt_from_row(int(row))
combined = (amb + "\n\n" + scn).strip()
return gr.update(value=amb, lines=min(10, amb.count("\n")+4)), gr.update(value=scn, lines=min(16, scn.count("\n")+6))
except Exception as e:
err = f"β {e}"
return gr.update(value=err), gr.update(value="")
async def ui_run(
model_name, ambience, scenes_block, negative,
width, height, steps, cfg, seed, row_number, save_to_sheet
):
imgs = await generate_five(
model_name=model_name,
ambience=ambience,
scenes_block=scenes_block,
negative=negative,
width=width,
height=height,
steps=steps,
cfg=cfg,
seed=int(seed),
)
msg = ""
if save_to_sheet and int(row_number) > 0:
links = persist_images(imgs, int(row_number))
if links:
write_links_to_row(int(row_number), links, mark_done=True)
msg = f"β
Saved & wrote {len(links)} URLs to '{COL_LINKS_OUT}' (row {int(row_number)})"
else:
msg = "β οΈ Generated images but did not save (missing HF_TOKEN?)"
return imgs, msg
with gr.Blocks(title="Loomvale Image Lab β SDXL cinematic (anime)") as demo:
gr.Markdown("## π¨ Loomvale Image Lab β SDXL cinematic generator (anime, 5 scenes β 5 images)")
with gr.Row():
model_name = gr.Dropdown(choices=MODEL_CHOICES, value=DEFAULT_MODEL, label="Model")
row_number = gr.Number(label="Google Sheet row (1-based)", value=2, precision=0)
pull_btn = gr.Button("π Pull from Google Sheet")
ambience = gr.Textbox(
label="ImagePrompt_Ambience",
placeholder="Paste your ambience (starts with `(Color Theme: β¦)` + overall style text)",
lines=8,
)
scenes_block = gr.Textbox(
label="ImagePrompt_Scenes (multi-scene block)",
placeholder="Scene 1 β ββ¦β\nVisual: β¦\nMood: β¦\nText: β¦\n\nScene 2 β β¦\nβ¦",
lines=16,
)
negative = gr.Textbox(label="Negative prompt", value=NEGATIVE_DEFAULT)
with gr.Row():
width = gr.Slider(640, 1536, 1024, step=8, label="Width")
height = gr.Slider(768, 1664, 1344, step=8, label="Height")
with gr.Row():
steps = gr.Slider(1, 60, 28, step=1, label="Steps")
cfg = gr.Slider(0, 12, 6.5, step=0.1, label="Guidance (CFG)")
seed = gr.Number(value=-1, label="Seed (-1=random)", precision=0)
save_to_sheet = gr.Checkbox(label=f"Write links to Sheet column β{COL_LINKS_OUT}β and mark Assistant=Done", value=True)
run_btn = gr.Button("π¬ Generate 5 images (one per scene)")
gallery = gr.Gallery(label="Output", columns=5, height=720)
status = gr.Markdown()
pull_btn.click(fn=ui_pull, inputs=row_number, outputs=[ambience, scenes_block])
run_btn.click(
fn=ui_run,
inputs=[model_name, ambience, scenes_block, negative, width, height, steps, cfg, seed, row_number, save_to_sheet],
outputs=[gallery, status],
)
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), max_threads=20)
|