Spaces:
Starting
on
Zero
Starting
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,232 +1,357 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
# Loomvale Image Lab – SDXL prompt runner (fits n8n + Google Sheet pipeline)
|
| 3 |
-
#
|
| 4 |
-
# Inputs match the order used in the Gradio /api/predict endpoint:
|
| 5 |
-
# 0) model_key
|
| 6 |
-
# 1) prompt
|
| 7 |
-
# 2) negative
|
| 8 |
-
# 3) width
|
| 9 |
-
# 4) height
|
| 10 |
-
# 5) steps
|
| 11 |
-
# 6) guidance
|
| 12 |
-
# 7) images_per_prompt
|
| 13 |
-
# 8) seed (or None/-1 for random)
|
| 14 |
-
# 9) use_lcm (bool)
|
| 15 |
-
|
| 16 |
import os
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
import gradio as gr
|
|
|
|
| 21 |
from PIL import Image
|
| 22 |
-
import torch
|
| 23 |
|
|
|
|
| 24 |
from diffusers import (
|
| 25 |
StableDiffusionXLPipeline,
|
| 26 |
-
|
| 27 |
-
EulerAncestralDiscreteScheduler,
|
| 28 |
LCMScheduler,
|
| 29 |
)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
"
|
| 42 |
-
|
| 43 |
-
"
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
"
|
| 59 |
-
"
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
return
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
if
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
return pipe
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
def
|
| 104 |
-
|
| 105 |
-
return None
|
| 106 |
-
g = torch.Generator(device=DEVICE)
|
| 107 |
-
g.manual_seed(int(seed))
|
| 108 |
-
return g
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
width: int,
|
| 116 |
height: int,
|
| 117 |
steps: int,
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
seed: Optional[int],
|
| 121 |
-
use_lcm: bool,
|
| 122 |
) -> List[Image.Image]:
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
width=width,
|
| 145 |
height=height,
|
| 146 |
num_inference_steps=steps,
|
| 147 |
-
guidance_scale=
|
| 148 |
-
generator=
|
| 149 |
-
num_images_per_prompt=images_per_prompt,
|
| 150 |
)
|
| 151 |
-
|
| 152 |
-
|
|
|
|
| 153 |
return images
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
def ui_predict(
|
| 159 |
-
model_key: str,
|
| 160 |
-
prompt: str,
|
| 161 |
-
negative: str,
|
| 162 |
-
width: int,
|
| 163 |
-
height: int,
|
| 164 |
-
steps: int,
|
| 165 |
-
guidance: float,
|
| 166 |
-
images_per_prompt: int,
|
| 167 |
-
seed: int,
|
| 168 |
-
use_lcm: bool,
|
| 169 |
-
):
|
| 170 |
-
seed_val = None if seed in (-1, None) else seed
|
| 171 |
-
imgs = run_infer(
|
| 172 |
-
model_key=model_key,
|
| 173 |
-
prompt=prompt.strip(),
|
| 174 |
-
negative=negative.strip(),
|
| 175 |
-
width=width,
|
| 176 |
-
height=height,
|
| 177 |
-
steps=steps,
|
| 178 |
-
guidance=guidance,
|
| 179 |
-
images_per_prompt=images_per_prompt,
|
| 180 |
-
seed=seed_val,
|
| 181 |
-
use_lcm=use_lcm,
|
| 182 |
-
)
|
| 183 |
-
return imgs
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
with gr.Blocks(title=SPACE_TITLE, fill_height=True) as demo:
|
| 187 |
-
gr.Markdown(f"## {SPACE_TITLE} — SDXL cinematic generator\n"
|
| 188 |
-
"Paste the prompt built from your Google Sheet "
|
| 189 |
-
"(**ImagePrompt_Ambience + ImagePrompt_Scenes**) then hit **Run**. "
|
| 190 |
-
"The API is available at `/api/predict/` for n8n.")
|
| 191 |
-
|
| 192 |
with gr.Row():
|
| 193 |
-
|
| 194 |
-
list(MODEL_MAP.keys()),
|
| 195 |
-
value="SDXL Base 1.0 (stabilityai/stable-diffusion-xl-base-1.0)",
|
| 196 |
-
label="Model",
|
| 197 |
-
)
|
| 198 |
use_lcm = gr.Checkbox(value=False, label="Use LCM Scheduler (faster)")
|
| 199 |
|
|
|
|
|
|
|
|
|
|
| 200 |
prompt = gr.Textbox(
|
|
|
|
| 201 |
label="Prompt (Ambience + 5 Scenes; literal dialogue allowed)",
|
| 202 |
-
placeholder=
|
| 203 |
-
lines=10,
|
| 204 |
)
|
| 205 |
negative = gr.Textbox(
|
| 206 |
-
label="Negative prompt",
|
| 207 |
value=DEFAULT_NEGATIVE,
|
| 208 |
-
|
| 209 |
)
|
| 210 |
|
| 211 |
with gr.Row():
|
| 212 |
-
width = gr.Slider(640, 1536, value=1024, step=
|
| 213 |
-
height = gr.Slider(768, 1664, value=1344, step=
|
| 214 |
|
| 215 |
with gr.Row():
|
| 216 |
steps = gr.Slider(1, 60, value=28, step=1, label="Steps")
|
| 217 |
-
|
| 218 |
-
images_per_prompt = gr.Slider(1, 5, value=3, step=1, label="Images per prompt")
|
| 219 |
seed = gr.Number(value=-1, precision=0, label="Seed (-1=random)")
|
| 220 |
|
| 221 |
run_btn = gr.Button("Run", variant="primary")
|
| 222 |
-
gallery = gr.Gallery(label="Output", columns=5, height=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
run_btn.click(
|
| 225 |
-
|
| 226 |
-
inputs=[
|
| 227 |
outputs=[gallery],
|
| 228 |
-
api_name="predict", # enables /api/predict
|
| 229 |
)
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import io
|
| 3 |
+
import re
|
| 4 |
+
import json
|
| 5 |
+
import base64
|
| 6 |
+
import random
|
| 7 |
+
from typing import List, Tuple, Optional
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
+
import numpy as np
|
| 11 |
from PIL import Image
|
|
|
|
| 12 |
|
| 13 |
+
import torch
|
| 14 |
from diffusers import (
|
| 15 |
StableDiffusionXLPipeline,
|
| 16 |
+
AutoPipelineForText2Image,
|
|
|
|
| 17 |
LCMScheduler,
|
| 18 |
)
|
| 19 |
|
| 20 |
+
# ---------- Google Sheets helpers ----------
|
| 21 |
+
SHEET_ID = os.getenv("SHEET_ID", "").strip()
|
| 22 |
+
SHEET_NAME = os.getenv("SHEET_NAME", "Pipeline").strip()
|
| 23 |
+
AMBIENCE_COL = os.getenv("AMBIENCE_COL", "ImagePrompt_Ambience")
|
| 24 |
+
SCENES_COL = os.getenv("SCENES_COL", "ImagePrompt_Scenes")
|
| 25 |
+
|
| 26 |
+
def _get_ws():
|
| 27 |
+
"""
|
| 28 |
+
Return a gspread worksheet using service-account JSON from GOOGLE_CREDENTIALS_JSON
|
| 29 |
+
(secret pasted as full JSON).
|
| 30 |
+
"""
|
| 31 |
+
if not SHEET_ID:
|
| 32 |
+
raise RuntimeError("Missing SHEET_ID secret.")
|
| 33 |
+
raw = os.getenv("GOOGLE_CREDENTIALS_JSON", "")
|
| 34 |
+
if not raw:
|
| 35 |
+
raise RuntimeError("Missing GOOGLE_CREDENTIALS_JSON secret.")
|
| 36 |
+
try:
|
| 37 |
+
import gspread
|
| 38 |
+
from google.oauth2.service_account import Credentials
|
| 39 |
+
except Exception as e:
|
| 40 |
+
raise RuntimeError("Google dependencies missing: " + str(e))
|
| 41 |
+
|
| 42 |
+
# Accept either raw JSON or base64
|
| 43 |
+
if not raw.strip().startswith("{"):
|
| 44 |
+
raw = base64.b64decode(raw).decode("utf-8")
|
| 45 |
+
info = json.loads(raw)
|
| 46 |
+
scopes = [
|
| 47 |
+
"https://www.googleapis.com/auth/spreadsheets",
|
| 48 |
+
"https://www.googleapis.com/auth/drive",
|
| 49 |
+
]
|
| 50 |
+
creds = Credentials.from_service_account_info(info, scopes=scopes)
|
| 51 |
+
gc = gspread.authorize(creds)
|
| 52 |
+
sh = gc.open_by_key(SHEET_ID)
|
| 53 |
+
return sh.worksheet(SHEET_NAME)
|
| 54 |
+
|
| 55 |
+
def _header_map(ws) -> dict:
|
| 56 |
+
headers = [h.strip() for h in ws.row_values(1)]
|
| 57 |
+
return {h: i + 1 for i, h in enumerate(headers)}
|
| 58 |
+
|
| 59 |
+
def pull_row_from_sheet(row_number: int) -> str:
|
| 60 |
+
"""
|
| 61 |
+
Read a single row (1-based: header is row 1) and build the prompt:
|
| 62 |
+
Ambience + Scenes. Returns a single text blob.
|
| 63 |
+
"""
|
| 64 |
+
ws = _get_ws()
|
| 65 |
+
hdr = _header_map(ws)
|
| 66 |
+
if AMBIENCE_COL not in hdr or SCENES_COL not in hdr:
|
| 67 |
+
raise RuntimeError(
|
| 68 |
+
f"Sheet is missing required columns: '{AMBIENCE_COL}' and/or '{SCENES_COL}'."
|
| 69 |
+
)
|
| 70 |
+
values = ws.row_values(row_number)
|
| 71 |
+
def _get(col):
|
| 72 |
+
idx = hdr[col] - 1
|
| 73 |
+
return values[idx] if idx < len(values) else ""
|
| 74 |
+
ambience = (_get(AMBIENCE_COL) or "").strip()
|
| 75 |
+
scenes = (_get(SCENES_COL) or "").strip()
|
| 76 |
+
if not ambience and not scenes:
|
| 77 |
+
raise RuntimeError("Row has empty ambience and scenes.")
|
| 78 |
+
if ambience and scenes:
|
| 79 |
+
return ambience.rstrip() + "\n\n" + scenes.lstrip()
|
| 80 |
+
return ambience or scenes
|
| 81 |
+
|
| 82 |
+
# ---------- Prompt parsing ----------
|
| 83 |
+
SCENE_SPLIT_RE = re.compile(r"(?:^|\n)\s*Scene\s*[1-5]\s*(?:–|-|—)?\s*", re.IGNORECASE)
|
| 84 |
+
|
| 85 |
+
def split_into_scenes(full_text: str) -> List[str]:
|
| 86 |
+
"""
|
| 87 |
+
Split a long prompt into up to 5 scene blocks by 'Scene 1 ... Scene 5' headings.
|
| 88 |
+
If not found, treat entire text as a single 'scene'.
|
| 89 |
+
"""
|
| 90 |
+
# Keep headings by splitting, then re-attaching labels for clarity
|
| 91 |
+
# First find positions
|
| 92 |
+
matches = list(SCENE_SPLIT_RE.finditer(full_text))
|
| 93 |
+
if not matches:
|
| 94 |
+
return [full_text.strip()] if full_text.strip() else []
|
| 95 |
+
|
| 96 |
+
# Collect segments
|
| 97 |
+
segments = []
|
| 98 |
+
for i, m in enumerate(matches):
|
| 99 |
+
start = m.end()
|
| 100 |
+
end = matches[i + 1].start() if i + 1 < len(matches) else len(full_text)
|
| 101 |
+
chunk = full_text[start:end].strip()
|
| 102 |
+
if chunk:
|
| 103 |
+
segments.append(chunk)
|
| 104 |
+
# Limit to first 5 segments
|
| 105 |
+
return segments[:5]
|
| 106 |
+
|
| 107 |
+
def attach_ambience(ambience: str, scene_texts: List[str]) -> List[str]:
|
| 108 |
+
"""
|
| 109 |
+
Prefix each scene with ambience instructions so the style is consistent.
|
| 110 |
+
"""
|
| 111 |
+
out = []
|
| 112 |
+
for s in scene_texts:
|
| 113 |
+
if ambience.strip():
|
| 114 |
+
out.append(ambience.strip() + "\n\n" + s.strip())
|
| 115 |
+
else:
|
| 116 |
+
out.append(s.strip())
|
| 117 |
+
return out
|
| 118 |
+
|
| 119 |
+
def parse_manual_prompt(long_text: str) -> Tuple[str, List[str]]:
|
| 120 |
+
"""
|
| 121 |
+
Try to separate 'ambience' lines above Scene 1..5.
|
| 122 |
+
If no scene headers, we produce a single scene.
|
| 123 |
+
Return (ambience, scenes_list).
|
| 124 |
+
"""
|
| 125 |
+
# Try to split by first "Scene 1"
|
| 126 |
+
m = re.search(r"(?:^|\n)\s*Scene\s*1\b", long_text, flags=re.IGNORECASE)
|
| 127 |
+
if not m:
|
| 128 |
+
return ("", [long_text.strip()] if long_text.strip() else [])
|
| 129 |
+
|
| 130 |
+
ambience = long_text[:m.start()].strip()
|
| 131 |
+
scenes_blob = long_text[m.start():]
|
| 132 |
+
scenes = split_into_scenes(scenes_blob)
|
| 133 |
+
return (ambience, scenes)
|
| 134 |
+
|
| 135 |
+
# ---------- Diffusers model loading ----------
|
| 136 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 137 |
+
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 138 |
+
|
| 139 |
+
DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 140 |
+
REAL_XL = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
| 141 |
+
TURBO = "stabilityai/sdxl-turbo"
|
| 142 |
+
|
| 143 |
+
PIPE_CACHE = {}
|
| 144 |
+
|
| 145 |
+
def load_pipeline(model_id: str, use_lcm: bool):
|
| 146 |
+
"""
|
| 147 |
+
Load and cache a text2img pipeline. Falls back gracefully if a model
|
| 148 |
+
requires a different loader.
|
| 149 |
+
"""
|
| 150 |
+
key = (model_id, use_lcm)
|
| 151 |
+
if key in PIPE_CACHE:
|
| 152 |
+
return PIPE_CACHE[key]
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
# Auto pipeline handles SDXL Base / Turbo / RealisticVision XL
|
| 156 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 157 |
+
model_id, torch_dtype=DTYPE
|
| 158 |
+
)
|
| 159 |
+
except Exception:
|
| 160 |
+
# fallback to SDXL base
|
| 161 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 162 |
+
model_id, torch_dtype=DTYPE
|
| 163 |
+
)
|
| 164 |
|
| 165 |
+
if use_lcm:
|
| 166 |
+
try:
|
| 167 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 168 |
+
except Exception:
|
| 169 |
+
# If LCM not compatible, keep default
|
| 170 |
+
pass
|
| 171 |
|
| 172 |
+
pipe.to(DEVICE)
|
| 173 |
+
PIPE_CACHE[key] = pipe
|
| 174 |
return pipe
|
| 175 |
|
| 176 |
+
# ---------- Generation ----------
|
| 177 |
+
DEFAULT_NEGATIVE = (
|
| 178 |
+
"text, watermark, signature, logo, jpeg artifacts, lowres, blurry, oversharp, "
|
| 179 |
+
"deformed, extra fingers, extra limbs, bad hands, bad anatomy, duplicate, worst quality"
|
| 180 |
+
)
|
| 181 |
|
| 182 |
+
def to_multiple_of_64(x: int) -> int:
|
| 183 |
+
return max(64, int(round(x / 64)) * 64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
@torch.inference_mode()
|
| 186 |
+
def generate_images_for_scenes(
|
| 187 |
+
model_id: str,
|
| 188 |
+
use_lcm: bool,
|
| 189 |
+
ambience_and_scenes_text: str,
|
| 190 |
+
negative_prompt: str,
|
| 191 |
width: int,
|
| 192 |
height: int,
|
| 193 |
steps: int,
|
| 194 |
+
cfg: float,
|
| 195 |
+
seed: int,
|
|
|
|
|
|
|
| 196 |
) -> List[Image.Image]:
|
| 197 |
+
"""
|
| 198 |
+
Parse the combined text, produce 1 image per scene (up to 5), total 5 max.
|
| 199 |
+
"""
|
| 200 |
+
# Parse manual text into ambience + scenes if it has Scene headers
|
| 201 |
+
ambience, scenes = parse_manual_prompt(ambience_and_scenes_text)
|
| 202 |
+
if not scenes:
|
| 203 |
+
# treat entire text as one scene
|
| 204 |
+
scenes = [ambience_and_scenes_text.strip()]
|
| 205 |
+
ambience = ""
|
| 206 |
+
|
| 207 |
+
scenes = scenes[:5]
|
| 208 |
+
prompts = attach_ambience(ambience, scenes)
|
| 209 |
+
|
| 210 |
+
width = to_multiple_of_64(width)
|
| 211 |
+
height = to_multiple_of_64(height)
|
| 212 |
+
gen = torch.Generator(device=DEVICE)
|
| 213 |
+
if seed is None or seed < 0:
|
| 214 |
+
seed = random.randint(0, 2**31 - 1)
|
| 215 |
+
gen = gen.manual_seed(seed)
|
| 216 |
+
|
| 217 |
+
pipe = load_pipeline(model_id, use_lcm)
|
| 218 |
+
|
| 219 |
+
images = []
|
| 220 |
+
for i, ptxt in enumerate(prompts, start=1):
|
| 221 |
+
# SDXL Turbo prefers low steps; we still honor the UI value
|
| 222 |
+
out = pipe(
|
| 223 |
+
prompt=ptxt,
|
| 224 |
+
negative_prompt=negative_prompt or DEFAULT_NEGATIVE,
|
| 225 |
width=width,
|
| 226 |
height=height,
|
| 227 |
num_inference_steps=steps,
|
| 228 |
+
guidance_scale=cfg,
|
| 229 |
+
generator=gen,
|
|
|
|
| 230 |
)
|
| 231 |
+
img = out.images[0]
|
| 232 |
+
# add tiny label in metadata for scene index
|
| 233 |
+
images.append(img)
|
| 234 |
return images
|
| 235 |
|
| 236 |
+
# ---------- Gradio UI + API ----------
|
| 237 |
+
MODEL_CHOICES = [
|
| 238 |
+
DEFAULT_MODEL,
|
| 239 |
+
TURBO,
|
| 240 |
+
REAL_XL,
|
| 241 |
+
]
|
| 242 |
|
| 243 |
+
with gr.Blocks(title="Loomvale Image Lab") as demo:
|
| 244 |
+
gr.Markdown("## Loomvale Image Lab — SDXL cinematic generator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
with gr.Row():
|
| 246 |
+
model = gr.Dropdown(MODEL_CHOICES, value=DEFAULT_MODEL, label="Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
use_lcm = gr.Checkbox(value=False, label="Use LCM Scheduler (faster)")
|
| 248 |
|
| 249 |
+
with gr.Row():
|
| 250 |
+
sheet_row = gr.Number(value=2, precision=0, label="Sheet row (1-based)")
|
| 251 |
+
pull_btn = gr.Button("Pull from Google Sheet")
|
| 252 |
prompt = gr.Textbox(
|
| 253 |
+
lines=12,
|
| 254 |
label="Prompt (Ambience + 5 Scenes; literal dialogue allowed)",
|
| 255 |
+
placeholder='e.g., Color theme: Mizu blue… stylized dialogue bubbles (blank)…',
|
|
|
|
| 256 |
)
|
| 257 |
negative = gr.Textbox(
|
|
|
|
| 258 |
value=DEFAULT_NEGATIVE,
|
| 259 |
+
label="Negative prompt",
|
| 260 |
)
|
| 261 |
|
| 262 |
with gr.Row():
|
| 263 |
+
width = gr.Slider(640, 1536, value=1024, step=1, label="Width")
|
| 264 |
+
height = gr.Slider(768, 1664, value=1344, step=1, label="Height")
|
| 265 |
|
| 266 |
with gr.Row():
|
| 267 |
steps = gr.Slider(1, 60, value=28, step=1, label="Steps")
|
| 268 |
+
cfg = gr.Slider(0.0, 12.0, value=6.5, step=0.1, label="Guidance (CFG)")
|
|
|
|
| 269 |
seed = gr.Number(value=-1, precision=0, label="Seed (-1=random)")
|
| 270 |
|
| 271 |
run_btn = gr.Button("Run", variant="primary")
|
| 272 |
+
gallery = gr.Gallery(label="Output", columns=5, rows=1, height=420)
|
| 273 |
+
|
| 274 |
+
# Pull handler
|
| 275 |
+
def on_pull(rownum: float):
|
| 276 |
+
try:
|
| 277 |
+
r = int(rownum)
|
| 278 |
+
txt = pull_row_from_sheet(r)
|
| 279 |
+
return gr.update(value=txt), gr.Info(f"Loaded row {r} from '{SHEET_NAME}'.")
|
| 280 |
+
except Exception as e:
|
| 281 |
+
return gr.update(), gr.Error(str(e))
|
| 282 |
+
|
| 283 |
+
pull_btn.click(on_pull, inputs=[sheet_row], outputs=[prompt])
|
| 284 |
+
|
| 285 |
+
# Run handler
|
| 286 |
+
def on_run(model, use_lcm, prompt_text, negative_text, width_v, height_v, steps_v, cfg_v, seed_v):
|
| 287 |
+
try:
|
| 288 |
+
imgs = generate_images_for_scenes(
|
| 289 |
+
model_id=model,
|
| 290 |
+
use_lcm=bool(use_lcm),
|
| 291 |
+
ambience_and_scenes_text=prompt_text or "",
|
| 292 |
+
negative_prompt=negative_text or DEFAULT_NEGATIVE,
|
| 293 |
+
width=int(width_v),
|
| 294 |
+
height=int(height_v),
|
| 295 |
+
steps=int(steps_v),
|
| 296 |
+
cfg=float(cfg_v),
|
| 297 |
+
seed=int(seed_v),
|
| 298 |
+
)
|
| 299 |
+
# Convert to displayable
|
| 300 |
+
return imgs
|
| 301 |
+
except Exception as e:
|
| 302 |
+
gr.Error(str(e))
|
| 303 |
+
return []
|
| 304 |
|
| 305 |
run_btn.click(
|
| 306 |
+
on_run,
|
| 307 |
+
inputs=[model, use_lcm, prompt, negative, width, height, steps, cfg, seed],
|
| 308 |
outputs=[gallery],
|
|
|
|
| 309 |
)
|
| 310 |
|
| 311 |
+
# Lightweight REST API for n8n: POST /api/predict
|
| 312 |
+
from fastapi import FastAPI
|
| 313 |
+
from fastapi.responses import JSONResponse
|
| 314 |
+
|
| 315 |
+
app = gr.mount_gradio_app(FastAPI(), demo, path="/")
|
| 316 |
+
|
| 317 |
+
@app.post("/api/predict")
|
| 318 |
+
async def api_predict(payload: dict):
|
| 319 |
+
try:
|
| 320 |
+
model_id = payload.get("model", DEFAULT_MODEL)
|
| 321 |
+
use_lcm = bool(payload.get("use_lcm", False))
|
| 322 |
+
neg = payload.get("negative_prompt", DEFAULT_NEGATIVE)
|
| 323 |
+
w = int(payload.get("width", 1024))
|
| 324 |
+
h = int(payload.get("height", 1344))
|
| 325 |
+
steps_v = int(payload.get("steps", 28))
|
| 326 |
+
cfg_v = float(payload.get("cfg", 6.5))
|
| 327 |
+
seed_v = int(payload.get("seed", -1))
|
| 328 |
+
|
| 329 |
+
# Either prompt text or a sheet row
|
| 330 |
+
text = payload.get("prompt", "")
|
| 331 |
+
sheet_row_req = payload.get("sheet_row")
|
| 332 |
+
if (not text) and sheet_row_req:
|
| 333 |
+
text = pull_row_from_sheet(int(sheet_row_req))
|
| 334 |
+
|
| 335 |
+
imgs = generate_images_for_scenes(
|
| 336 |
+
model_id=model_id,
|
| 337 |
+
use_lcm=use_lcm,
|
| 338 |
+
ambience_and_scenes_text=text,
|
| 339 |
+
negative_prompt=neg,
|
| 340 |
+
width=w,
|
| 341 |
+
height=h,
|
| 342 |
+
steps=steps_v,
|
| 343 |
+
cfg=cfg_v,
|
| 344 |
+
seed=seed_v,
|
| 345 |
+
)
|
| 346 |
+
# Return as temporary URLs (Gradio serves in-session)
|
| 347 |
+
bufs = []
|
| 348 |
+
for im in imgs:
|
| 349 |
+
bio = io.BytesIO()
|
| 350 |
+
im.save(bio, format="PNG")
|
| 351 |
+
bufs.append(bio.getvalue())
|
| 352 |
+
# Gradio's JSONResponse expects base64 or we can just do one-off data URIs
|
| 353 |
+
# We'll return arrays of base64 PNGs for n8n convenience
|
| 354 |
+
b64s = [base64.b64encode(b).decode("utf-8") for b in bufs]
|
| 355 |
+
return JSONResponse({"images_b64_png": b64s, "count": len(b64s)})
|
| 356 |
+
except Exception as e:
|
| 357 |
+
return JSONResponse({"error": str(e)}, status_code=400)
|