File size: 8,066 Bytes
1b9ceeb 3f24070 173b078 3f24070 173b078 3f24070 1b9ceeb 3f24070 173b078 3f24070 173b078 3f24070 1b9ceeb 7425d17 173b078 7425d17 173b078 7425d17 3f24070 1b9ceeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile # ์์ ํ์ผ์ ์์ฑํ๊ธฐ ์ํ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์
๋๋ค.
import os
from huggingface_hub import hf_hub_download # Hugging Face Hub์์ ๋ชจ๋ธ์ ๋ค์ด๋ก๋ํ๊ธฐ ์ํ ํจ์์
๋๋ค.
# PDF ๋ฌธ์๋ก๋ถํฐ ํ
์คํธ๋ฅผ ์ถ์ถํ๋ ํจ์์
๋๋ค.
def get_pdf_text(pdf_docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f: # ์์ ํ์ผ์ ๋ฐ์ด๋๋ฆฌ ์ฐ๊ธฐ ๋ชจ๋๋ก ์ฝ๋๋ค.
f.write(pdf_docs.getvalue()) # PDF ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoader๋ฅผ ์ฌ์ฉํด PDF๋ฅผ ๋ก๋ํฉ๋๋ค.
pdf_doc = pdf_loader.load() # ํ
์คํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
return pdf_doc # ์ถ์ถํ ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค.
# ๊ณผ์
# ์๋ ํ
์คํธ ์ถ์ถ ํจ์๋ฅผ ์์ฑ
def get_text_file(docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, temp_file.txt) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f:
f.write(text_docs.getvalue()) # text ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
text_loader = TextLoader(temp_filepath) # TextLoader๋ฅผ ์ฌ์ฉํด text๋ฅผ ๋ก๋ํฉ๋๋ค.
text_doc = text_loader.load() # ํ
์คํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
return text_doc # ์ถ์ถํ ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค.
def get_csv_file(docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, temp_file.csv) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f:
f.write(csv_docs.getvalue()) # CSV ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
csv_loader = CSVLoader(temp_filepath) # CSVLoader๋ฅผ ์ฌ์ฉํด CSV๋ฅผ ๋ก๋ํฉ๋๋ค.
csv_doc = csv_loader.load() # ํ
์คํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
return csv_doc # ์ถ์ถํ ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค.
def get_json_file(docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, temp_file.json) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f:
f.write(json_docs.getvalue()) # JSON ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
json_loader = JSONLoader(temp_filepath, jq_schema='.messages[].content', text_content=False) # JSONLoader๋ฅผ ์ฌ์ฉํด JSON๋ฅผ ๋ก๋ํฉ๋๋ค.
json_doc = json_loader.load() # ํ
์คํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
return json_doc # ์ถ์ถํ ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค.
# ๋ฌธ์๋ค์ ์ฒ๋ฆฌํ์ฌ ํ
์คํธ ์ฒญํฌ๋ก ๋๋๋ ํจ์์
๋๋ค.
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # ์ฒญํฌ์ ํฌ๊ธฐ๋ฅผ ์ง์ ํฉ๋๋ค.
chunk_overlap=200, # ์ฒญํฌ ์ฌ์ด์ ์ค๋ณต์ ์ง์ ํฉ๋๋ค.
length_function=len # ํ
์คํธ์ ๊ธธ์ด๋ฅผ ์ธก์ ํ๋ ํจ์๋ฅผ ์ง์ ํฉ๋๋ค.
)
documents = text_splitter.split_documents(documents) # ๋ฌธ์๋ค์ ์ฒญํฌ๋ก ๋๋๋๋ค.
return documents # ๋๋ ์ฒญํฌ๋ฅผ ๋ฐํํฉ๋๋ค.
# ํ
์คํธ ์ฒญํฌ๋ค๋ก๋ถํฐ ๋ฒกํฐ ์คํ ์ด๋ฅผ ์์ฑํ๋ ํจ์์
๋๋ค.
def get_vectorstore(text_chunks):
# ์ํ๋ ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ๋ก๋ํฉ๋๋ค.
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
model_kwargs={'device': 'cpu'}) # ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ์ค์ ํฉ๋๋ค.
vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS ๋ฒกํฐ ์คํ ์ด๋ฅผ ์์ฑํฉ๋๋ค.
return vectorstore # ์์ฑ๋ ๋ฒกํฐ ์คํ ์ด๋ฅผ ๋ฐํํฉ๋๋ค.
def get_conversation_chain(vectorstore):
model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
model_basename = 'llama-2-7b-chat.Q2_K.gguf'
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
llm = LlamaCpp(model_path=model_path,
n_ctx=4086,
input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
verbose=True, )
# ๋ํ ๊ธฐ๋ก์ ์ ์ฅํ๊ธฐ ์ํ ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
# ๋ํ ๊ฒ์ ์ฒด์ธ์ ์์ฑํฉ๋๋ค.
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain # ์์ฑ๋ ๋ํ ์ฒด์ธ์ ๋ฐํํฉ๋๋ค.
# ์ฌ์ฉ์ ์
๋ ฅ์ ์ฒ๋ฆฌํ๋ ํจ์์
๋๋ค.
def handle_userinput(user_question):
print('user_question => ', user_question)
# ๋ํ ์ฒด์ธ์ ์ฌ์ฉํ์ฌ ์ฌ์ฉ์ ์ง๋ฌธ์ ๋ํ ์๋ต์ ์์ฑํฉ๋๋ค.
response = st.session_state.conversation({'question': user_question})
# ๋ํ ๊ธฐ๋ก์ ์ ์ฅํฉ๋๋ค.
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple Files",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple Files:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
doc_list = []
for file in docs:
print('file - type : ', file.type)
if file.type == 'text/plain':
# file is .txt
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
# file is .pdf
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
# file is .csv
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
# file is .json
doc_list.extend(get_json_file(file))
# get the text chunks
text_chunks = get_text_chunks(doc_list)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main() |