File size: 11,913 Bytes
0f0db0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

from functools import reduce

import numpy as np

from sklearn.preprocessing import LabelEncoder
from sklearn.utils import check_matplotlib_support
from sklearn.utils import _safe_indexing
from sklearn.base import is_regressor
from sklearn.utils.validation import check_is_fitted


def _check_boundary_response_method(estimator, response_method):
    """Return prediction method from the `response_method` for decision boundary.
    Parameters
    ----------
    estimator : object
        Fitted estimator to check.
    response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
        Specifies whether to use :term:`predict_proba`,
        :term:`decision_function`, :term:`predict` as the target response.
        If set to 'auto', the response method is tried in the following order:
        :term:`decision_function`, :term:`predict_proba`, :term:`predict`.
    Returns
    -------
    prediction_method: callable
        Prediction method of estimator.
    """
    has_classes = hasattr(estimator, "classes_")
    
    if has_classes and len(estimator.classes_) > 2:
        if response_method not in {"auto", "predict"}:
            msg = (
                "Multiclass classifiers are only supported when response_method is"
                " 'predict' or 'auto'"
            )
            raise ValueError(msg)
        methods_list = ["predict"]
    elif response_method == "auto":
        methods_list = ["decision_function", "predict_proba", "predict"]
    else:
        methods_list = [response_method]

    prediction_method = [getattr(estimator, method, None) for method in methods_list]
    prediction_method = reduce(lambda x, y: x or y, prediction_method)
    if prediction_method is None:
        raise ValueError(
            f"{estimator.__class__.__name__} has none of the following attributes: "
            f"{', '.join(methods_list)}."
        )

    return prediction_method


class DecisionBoundaryDisplay:
    """Decisions boundary visualization.
    It is recommended to use
    :func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
    to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
    attributes.
    Read more in the :ref:`User Guide <visualizations>`.
    .. versionadded:: 1.1
    Parameters
    ----------
    xx0 : ndarray of shape (grid_resolution, grid_resolution)
        First output of :func:`meshgrid <numpy.meshgrid>`.
    xx1 : ndarray of shape (grid_resolution, grid_resolution)
        Second output of :func:`meshgrid <numpy.meshgrid>`.
    response : ndarray of shape (grid_resolution, grid_resolution)
        Values of the response function.
    xlabel : str, default=None
        Default label to place on x axis.
    ylabel : str, default=None
        Default label to place on y axis.
    Attributes
    ----------
    surface_ : matplotlib `QuadContourSet` or `QuadMesh`
        If `plot_method` is 'contour' or 'contourf', `surface_` is a
        :class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
        `plot_method is `pcolormesh`, `surface_` is a
        :class:`QuadMesh <matplotlib.collections.QuadMesh>`.
    ax_ : matplotlib Axes
        Axes with confusion matrix.
    figure_ : matplotlib Figure
        Figure containing the confusion matrix.
    """

    def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None):
        self.xx0 = xx0
        self.xx1 = xx1
        self.response = response
        self.xlabel = xlabel
        self.ylabel = ylabel

    def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
        """Plot visualization.
        Parameters
        ----------
        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolomesh <matplotlib.pyplot.pcolomesh>`.
        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.
        xlabel : str, default=None
            Overwrite the x-axis label.
        ylabel : str, default=None
            Overwrite the y-axis label.
        **kwargs : dict
            Additional keyword arguments to be passed to the `plot_method`.
        Returns
        -------
        display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
        """
        check_matplotlib_support("DecisionBoundaryDisplay.plot")
        import matplotlib.pyplot as plt  # noqa

        if plot_method not in ("contourf", "contour", "pcolormesh"):
            raise ValueError(
                "plot_method must be 'contourf', 'contour', or 'pcolormesh'"
            )

        if ax is None:
            _, ax = plt.subplots()

        plot_func = getattr(ax, plot_method)
        self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)

        if xlabel is not None or not ax.get_xlabel():
            xlabel = self.xlabel if xlabel is None else xlabel
            ax.set_xlabel(xlabel)
        if ylabel is not None or not ax.get_ylabel():
            ylabel = self.ylabel if ylabel is None else ylabel
            ax.set_ylabel(ylabel)

        self.ax_ = ax
        self.figure_ = ax.figure
        return self

    @classmethod
    def from_estimator(
        cls,
        estimator,
        X,
        *,
        grid_resolution=100,
        eps=1.0,
        plot_method="contourf",
        response_method="auto",
        xlabel=None,
        ylabel=None,
        ax=None,
        **kwargs,
    ):
        """Plot decision boundary given an estimator.
        Read more in the :ref:`User Guide <visualizations>`.
        Parameters
        ----------
        estimator : object
            Trained estimator used to plot the decision boundary.
        X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
            Input data that should be only 2-dimensional.
        grid_resolution : int, default=100
            Number of grid points to use for plotting decision boundary.
            Higher values will make the plot look nicer but be slower to
            render.
        eps : float, default=1.0
            Extends the minimum and maximum values of X for evaluating the
            response function.
        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolomesh <matplotlib.pyplot.pcolomesh>`.
        response_method : {'auto', 'predict_proba', 'decision_function', \
                'predict'}, default='auto'
            Specifies whether to use :term:`predict_proba`,
            :term:`decision_function`, :term:`predict` as the target response.
            If set to 'auto', the response method is tried in the following order:
            :term:`decision_function`, :term:`predict_proba`, :term:`predict`.
            For multiclass problems, :term:`predict` is selected when
            `response_method="auto"`.
        xlabel : str, default=None
            The label used for the x-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.
        ylabel : str, default=None
            The label used for the y-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.
        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.
        **kwargs : dict
            Additional keyword arguments to be passed to the
            `plot_method`.
        Returns
        -------
        display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores the result.
        See Also
        --------
        DecisionBoundaryDisplay : Decision boundary visualization.
        ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
            given an estimator, the data, and the label.
        ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
            given the true and predicted labels.
        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import load_iris
        >>> from sklearn.linear_model import LogisticRegression
        >>> from sklearn.inspection import DecisionBoundaryDisplay
        >>> iris = load_iris()
        >>> X = iris.data[:, :2]
        >>> classifier = LogisticRegression().fit(X, iris.target)
        >>> disp = DecisionBoundaryDisplay.from_estimator(
        ...     classifier, X, response_method="predict",
        ...     xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
        ...     alpha=0.5,
        ... )
        >>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
        <...>
        >>> plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_estimator")
        check_is_fitted(estimator)

        if not grid_resolution > 1:
            raise ValueError(
                "grid_resolution must be greater than 1. Got"
                f" {grid_resolution} instead."
            )

        if not eps >= 0:
            raise ValueError(
                f"eps must be greater than or equal to 0. Got {eps} instead."
            )

        possible_plot_methods = ("contourf", "contour", "pcolormesh")
        if plot_method not in possible_plot_methods:
            available_methods = ", ".join(possible_plot_methods)
            raise ValueError(
                f"plot_method must be one of {available_methods}. "
                f"Got {plot_method} instead."
            )

        x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)

        x0_min, x0_max = x0.min() - eps, x0.max() + eps
        x1_min, x1_max = x1.min() - eps, x1.max() + eps

        xx0, xx1 = np.meshgrid(
            np.linspace(x0_min, x0_max, grid_resolution),
            np.linspace(x1_min, x1_max, grid_resolution),
        )
        if hasattr(X, "iloc"):
            # we need to preserve the feature names and therefore get an empty dataframe
            X_grid = X.iloc[[], :].copy()
            X_grid.iloc[:, 0] = xx0.ravel()
            X_grid.iloc[:, 1] = xx1.ravel()
        else:
            X_grid = np.c_[xx0.ravel(), xx1.ravel()]

        pred_func = _check_boundary_response_method(estimator, response_method)
        response = pred_func(X_grid)

        # convert classes predictions into integers
        if pred_func.__name__ == "predict" and hasattr(estimator, "classes_"):
            encoder = LabelEncoder()
            encoder.classes_ = estimator.classes_
            response = encoder.transform(response)

        if response.ndim != 1:
            if is_regressor(estimator):
                raise ValueError("Multi-output regressors are not supported")

            # TODO: Support pos_label
            response = response[:, 1]

        if xlabel is None:
            xlabel = X.columns[0] if hasattr(X, "columns") else ""

        if ylabel is None:
            ylabel = X.columns[1] if hasattr(X, "columns") else ""

        display = DecisionBoundaryDisplay(
            xx0=xx0,
            xx1=xx1,
            response=response.reshape(xx0.shape),
            xlabel=xlabel,
            ylabel=ylabel,
        )
        return display.plot(ax=ax, plot_method=plot_method, **kwargs)