Spaces:
Runtime error
Runtime error
Create new file
Browse files- decision_boundary.py +300 -0
decision_boundary.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
from matplotlib.colors import ListedColormap
|
3 |
+
|
4 |
+
from functools import reduce
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from sklearn.preprocessing import LabelEncoder
|
9 |
+
from sklearn.utils import check_matplotlib_support
|
10 |
+
from sklearn.utils import _safe_indexing
|
11 |
+
from sklearn.base import is_regressor
|
12 |
+
from sklearn.utils.validation import check_is_fitted
|
13 |
+
|
14 |
+
|
15 |
+
def _check_boundary_response_method(estimator, response_method):
|
16 |
+
"""Return prediction method from the `response_method` for decision boundary.
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
estimator : object
|
20 |
+
Fitted estimator to check.
|
21 |
+
response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
|
22 |
+
Specifies whether to use :term:`predict_proba`,
|
23 |
+
:term:`decision_function`, :term:`predict` as the target response.
|
24 |
+
If set to 'auto', the response method is tried in the following order:
|
25 |
+
:term:`decision_function`, :term:`predict_proba`, :term:`predict`.
|
26 |
+
Returns
|
27 |
+
-------
|
28 |
+
prediction_method: callable
|
29 |
+
Prediction method of estimator.
|
30 |
+
"""
|
31 |
+
has_classes = hasattr(estimator, "classes_")
|
32 |
+
|
33 |
+
if has_classes and len(estimator.classes_) > 2:
|
34 |
+
if response_method not in {"auto", "predict"}:
|
35 |
+
msg = (
|
36 |
+
"Multiclass classifiers are only supported when response_method is"
|
37 |
+
" 'predict' or 'auto'"
|
38 |
+
)
|
39 |
+
raise ValueError(msg)
|
40 |
+
methods_list = ["predict"]
|
41 |
+
elif response_method == "auto":
|
42 |
+
methods_list = ["decision_function", "predict_proba", "predict"]
|
43 |
+
else:
|
44 |
+
methods_list = [response_method]
|
45 |
+
|
46 |
+
prediction_method = [getattr(estimator, method, None) for method in methods_list]
|
47 |
+
prediction_method = reduce(lambda x, y: x or y, prediction_method)
|
48 |
+
if prediction_method is None:
|
49 |
+
raise ValueError(
|
50 |
+
f"{estimator.__class__.__name__} has none of the following attributes: "
|
51 |
+
f"{', '.join(methods_list)}."
|
52 |
+
)
|
53 |
+
|
54 |
+
return prediction_method
|
55 |
+
|
56 |
+
|
57 |
+
class DecisionBoundaryDisplay:
|
58 |
+
"""Decisions boundary visualization.
|
59 |
+
It is recommended to use
|
60 |
+
:func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
|
61 |
+
to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
|
62 |
+
attributes.
|
63 |
+
Read more in the :ref:`User Guide <visualizations>`.
|
64 |
+
.. versionadded:: 1.1
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
xx0 : ndarray of shape (grid_resolution, grid_resolution)
|
68 |
+
First output of :func:`meshgrid <numpy.meshgrid>`.
|
69 |
+
xx1 : ndarray of shape (grid_resolution, grid_resolution)
|
70 |
+
Second output of :func:`meshgrid <numpy.meshgrid>`.
|
71 |
+
response : ndarray of shape (grid_resolution, grid_resolution)
|
72 |
+
Values of the response function.
|
73 |
+
xlabel : str, default=None
|
74 |
+
Default label to place on x axis.
|
75 |
+
ylabel : str, default=None
|
76 |
+
Default label to place on y axis.
|
77 |
+
Attributes
|
78 |
+
----------
|
79 |
+
surface_ : matplotlib `QuadContourSet` or `QuadMesh`
|
80 |
+
If `plot_method` is 'contour' or 'contourf', `surface_` is a
|
81 |
+
:class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
|
82 |
+
`plot_method is `pcolormesh`, `surface_` is a
|
83 |
+
:class:`QuadMesh <matplotlib.collections.QuadMesh>`.
|
84 |
+
ax_ : matplotlib Axes
|
85 |
+
Axes with confusion matrix.
|
86 |
+
figure_ : matplotlib Figure
|
87 |
+
Figure containing the confusion matrix.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None):
|
91 |
+
self.xx0 = xx0
|
92 |
+
self.xx1 = xx1
|
93 |
+
self.response = response
|
94 |
+
self.xlabel = xlabel
|
95 |
+
self.ylabel = ylabel
|
96 |
+
|
97 |
+
def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
|
98 |
+
"""Plot visualization.
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
|
102 |
+
Plotting method to call when plotting the response. Please refer
|
103 |
+
to the following matplotlib documentation for details:
|
104 |
+
:func:`contourf <matplotlib.pyplot.contourf>`,
|
105 |
+
:func:`contour <matplotlib.pyplot.contour>`,
|
106 |
+
:func:`pcolomesh <matplotlib.pyplot.pcolomesh>`.
|
107 |
+
ax : Matplotlib axes, default=None
|
108 |
+
Axes object to plot on. If `None`, a new figure and axes is
|
109 |
+
created.
|
110 |
+
xlabel : str, default=None
|
111 |
+
Overwrite the x-axis label.
|
112 |
+
ylabel : str, default=None
|
113 |
+
Overwrite the y-axis label.
|
114 |
+
**kwargs : dict
|
115 |
+
Additional keyword arguments to be passed to the `plot_method`.
|
116 |
+
Returns
|
117 |
+
-------
|
118 |
+
display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
|
119 |
+
"""
|
120 |
+
check_matplotlib_support("DecisionBoundaryDisplay.plot")
|
121 |
+
import matplotlib.pyplot as plt # noqa
|
122 |
+
|
123 |
+
if plot_method not in ("contourf", "contour", "pcolormesh"):
|
124 |
+
raise ValueError(
|
125 |
+
"plot_method must be 'contourf', 'contour', or 'pcolormesh'"
|
126 |
+
)
|
127 |
+
|
128 |
+
if ax is None:
|
129 |
+
_, ax = plt.subplots()
|
130 |
+
|
131 |
+
plot_func = getattr(ax, plot_method)
|
132 |
+
self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)
|
133 |
+
|
134 |
+
if xlabel is not None or not ax.get_xlabel():
|
135 |
+
xlabel = self.xlabel if xlabel is None else xlabel
|
136 |
+
ax.set_xlabel(xlabel)
|
137 |
+
if ylabel is not None or not ax.get_ylabel():
|
138 |
+
ylabel = self.ylabel if ylabel is None else ylabel
|
139 |
+
ax.set_ylabel(ylabel)
|
140 |
+
|
141 |
+
self.ax_ = ax
|
142 |
+
self.figure_ = ax.figure
|
143 |
+
return self
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def from_estimator(
|
147 |
+
cls,
|
148 |
+
estimator,
|
149 |
+
X,
|
150 |
+
*,
|
151 |
+
grid_resolution=100,
|
152 |
+
eps=1.0,
|
153 |
+
plot_method="contourf",
|
154 |
+
response_method="auto",
|
155 |
+
xlabel=None,
|
156 |
+
ylabel=None,
|
157 |
+
ax=None,
|
158 |
+
**kwargs,
|
159 |
+
):
|
160 |
+
"""Plot decision boundary given an estimator.
|
161 |
+
Read more in the :ref:`User Guide <visualizations>`.
|
162 |
+
Parameters
|
163 |
+
----------
|
164 |
+
estimator : object
|
165 |
+
Trained estimator used to plot the decision boundary.
|
166 |
+
X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
|
167 |
+
Input data that should be only 2-dimensional.
|
168 |
+
grid_resolution : int, default=100
|
169 |
+
Number of grid points to use for plotting decision boundary.
|
170 |
+
Higher values will make the plot look nicer but be slower to
|
171 |
+
render.
|
172 |
+
eps : float, default=1.0
|
173 |
+
Extends the minimum and maximum values of X for evaluating the
|
174 |
+
response function.
|
175 |
+
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
|
176 |
+
Plotting method to call when plotting the response. Please refer
|
177 |
+
to the following matplotlib documentation for details:
|
178 |
+
:func:`contourf <matplotlib.pyplot.contourf>`,
|
179 |
+
:func:`contour <matplotlib.pyplot.contour>`,
|
180 |
+
:func:`pcolomesh <matplotlib.pyplot.pcolomesh>`.
|
181 |
+
response_method : {'auto', 'predict_proba', 'decision_function', \
|
182 |
+
'predict'}, default='auto'
|
183 |
+
Specifies whether to use :term:`predict_proba`,
|
184 |
+
:term:`decision_function`, :term:`predict` as the target response.
|
185 |
+
If set to 'auto', the response method is tried in the following order:
|
186 |
+
:term:`decision_function`, :term:`predict_proba`, :term:`predict`.
|
187 |
+
For multiclass problems, :term:`predict` is selected when
|
188 |
+
`response_method="auto"`.
|
189 |
+
xlabel : str, default=None
|
190 |
+
The label used for the x-axis. If `None`, an attempt is made to
|
191 |
+
extract a label from `X` if it is a dataframe, otherwise an empty
|
192 |
+
string is used.
|
193 |
+
ylabel : str, default=None
|
194 |
+
The label used for the y-axis. If `None`, an attempt is made to
|
195 |
+
extract a label from `X` if it is a dataframe, otherwise an empty
|
196 |
+
string is used.
|
197 |
+
ax : Matplotlib axes, default=None
|
198 |
+
Axes object to plot on. If `None`, a new figure and axes is
|
199 |
+
created.
|
200 |
+
**kwargs : dict
|
201 |
+
Additional keyword arguments to be passed to the
|
202 |
+
`plot_method`.
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
|
206 |
+
Object that stores the result.
|
207 |
+
See Also
|
208 |
+
--------
|
209 |
+
DecisionBoundaryDisplay : Decision boundary visualization.
|
210 |
+
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
|
211 |
+
given an estimator, the data, and the label.
|
212 |
+
ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
|
213 |
+
given the true and predicted labels.
|
214 |
+
Examples
|
215 |
+
--------
|
216 |
+
>>> import matplotlib.pyplot as plt
|
217 |
+
>>> from sklearn.datasets import load_iris
|
218 |
+
>>> from sklearn.linear_model import LogisticRegression
|
219 |
+
>>> from sklearn.inspection import DecisionBoundaryDisplay
|
220 |
+
>>> iris = load_iris()
|
221 |
+
>>> X = iris.data[:, :2]
|
222 |
+
>>> classifier = LogisticRegression().fit(X, iris.target)
|
223 |
+
>>> disp = DecisionBoundaryDisplay.from_estimator(
|
224 |
+
... classifier, X, response_method="predict",
|
225 |
+
... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
|
226 |
+
... alpha=0.5,
|
227 |
+
... )
|
228 |
+
>>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
|
229 |
+
<...>
|
230 |
+
>>> plt.show()
|
231 |
+
"""
|
232 |
+
check_matplotlib_support(f"{cls.__name__}.from_estimator")
|
233 |
+
check_is_fitted(estimator)
|
234 |
+
|
235 |
+
if not grid_resolution > 1:
|
236 |
+
raise ValueError(
|
237 |
+
"grid_resolution must be greater than 1. Got"
|
238 |
+
f" {grid_resolution} instead."
|
239 |
+
)
|
240 |
+
|
241 |
+
if not eps >= 0:
|
242 |
+
raise ValueError(
|
243 |
+
f"eps must be greater than or equal to 0. Got {eps} instead."
|
244 |
+
)
|
245 |
+
|
246 |
+
possible_plot_methods = ("contourf", "contour", "pcolormesh")
|
247 |
+
if plot_method not in possible_plot_methods:
|
248 |
+
available_methods = ", ".join(possible_plot_methods)
|
249 |
+
raise ValueError(
|
250 |
+
f"plot_method must be one of {available_methods}. "
|
251 |
+
f"Got {plot_method} instead."
|
252 |
+
)
|
253 |
+
|
254 |
+
x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)
|
255 |
+
|
256 |
+
x0_min, x0_max = x0.min() - eps, x0.max() + eps
|
257 |
+
x1_min, x1_max = x1.min() - eps, x1.max() + eps
|
258 |
+
|
259 |
+
xx0, xx1 = np.meshgrid(
|
260 |
+
np.linspace(x0_min, x0_max, grid_resolution),
|
261 |
+
np.linspace(x1_min, x1_max, grid_resolution),
|
262 |
+
)
|
263 |
+
if hasattr(X, "iloc"):
|
264 |
+
# we need to preserve the feature names and therefore get an empty dataframe
|
265 |
+
X_grid = X.iloc[[], :].copy()
|
266 |
+
X_grid.iloc[:, 0] = xx0.ravel()
|
267 |
+
X_grid.iloc[:, 1] = xx1.ravel()
|
268 |
+
else:
|
269 |
+
X_grid = np.c_[xx0.ravel(), xx1.ravel()]
|
270 |
+
|
271 |
+
pred_func = _check_boundary_response_method(estimator, response_method)
|
272 |
+
response = pred_func(X_grid)
|
273 |
+
|
274 |
+
# convert classes predictions into integers
|
275 |
+
if pred_func.__name__ == "predict" and hasattr(estimator, "classes_"):
|
276 |
+
encoder = LabelEncoder()
|
277 |
+
encoder.classes_ = estimator.classes_
|
278 |
+
response = encoder.transform(response)
|
279 |
+
|
280 |
+
if response.ndim != 1:
|
281 |
+
if is_regressor(estimator):
|
282 |
+
raise ValueError("Multi-output regressors are not supported")
|
283 |
+
|
284 |
+
# TODO: Support pos_label
|
285 |
+
response = response[:, 1]
|
286 |
+
|
287 |
+
if xlabel is None:
|
288 |
+
xlabel = X.columns[0] if hasattr(X, "columns") else ""
|
289 |
+
|
290 |
+
if ylabel is None:
|
291 |
+
ylabel = X.columns[1] if hasattr(X, "columns") else ""
|
292 |
+
|
293 |
+
display = DecisionBoundaryDisplay(
|
294 |
+
xx0=xx0,
|
295 |
+
xx1=xx1,
|
296 |
+
response=response.reshape(xx0.shape),
|
297 |
+
xlabel=xlabel,
|
298 |
+
ylabel=ylabel,
|
299 |
+
)
|
300 |
+
return display.plot(ax=ax, plot_method=plot_method, **kwargs)
|