Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,805 Bytes
e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede 12e2ec8 fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede 12e2ec8 fb94ede 12e2ec8 fb94ede e368cec 12e2ec8 fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec fb94ede e368cec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import fire
import json
import os
import datasets
import random
import datetime
from pathlib import Path
from datetime import datetime
from PIL import Image
datasets.config.DEFAULT_MAX_BATCH_SIZE = 500
def create_hf_battle_dataset(data_file: str, split="test", task_type="t2i_generation"):
if task_type == "t2i_generation":
features = datasets.Features(
{
"index": datasets.Value("int32"),
"tstamp": datasets.Value("int32"),
"prompt": datasets.Value("string"),
"left_model": datasets.Value("string"),
"left_image": datasets.Image(),
"right_model": datasets.Value("string"),
"right_image": datasets.Image(),
"vote_type": datasets.Value("string"),
"winner": datasets.Value("string"),
"anony": datasets.Value("bool"),
"judge": datasets.Value("string"),
}
)
else:
raise ValueError(f"Task type {task_type} not supported")
hf_dataset = datasets.Dataset.from_list(
data_file,
features=features,
split=split,
)
return hf_dataset
def load_image(path:str):
try:
return Image.open(path)
except Exception as e:
print(f"Error loading image {path}: {e}")
return None
def get_date_from_time_stamp(unix_timestamp: int):
# Create a datetime object from the Unix timestamp
dt = datetime.fromtimestamp(unix_timestamp)
# Convert the datetime object to a string with the desired format
date_str = dt.strftime("%Y-%m-%d")
return date_str
def load_battle_image(battle, log_dir):
image_path = Path(log_dir) / f"{get_date_from_time_stamp(battle['tstamp'])}-convinput_images" / f"input_image_{battle['question_id']}.png"
return load_image(image_path)
def find_media_path(conv_id, task_type, log_dir):
media_directory_map = {
"t2i_generation": "images/generation",
"image_edition": "images/edition",
"text2video": "videos/generation"
}
if task_type == "t2i_generation":
media_path = Path(log_dir) / media_directory_map[task_type] / f"{conv_id}.jpg"
else:
raise ValueError(f"Task type {task_type} not supported")
return media_path
def main(
task_type='t2i_generation',
# data_file: str = "./results/latest/clean_battle_conv.json",
data_file: str = None,
repo_id: str = "TIGER-Lab/GenAI-Arena-human-eval",
log_dir: str = os.getenv("LOGDIR", "../GenAI-Arena-hf-logs/vote_log"),
config_name='battle',
split='test',
token = os.environ.get("HUGGINGFACE_TOKEN", None),
seed=42,
):
if data_file is None:
data_file = f"./results/latest/clean_battle_{task_type}.json"
if not os.path.exists(data_file):
raise ValueError(f"Data file {data_file} does not exist")
with open(data_file, "r") as f:
data = json.load(f)
# add index according to the tsamp
if seed is not None:
random.seed(seed)
data = sorted(data, key=lambda x: x['tstamp'])
required_keys_each_task = {
"image_editing": ["source_prompt", "target_prompt", "instruct_prompt"],
"t2i_generation": ["prompt"],
"video_generation": ["prompt"]
}
valid_data = []
for i, battle in enumerate(data):
if any(key not in battle['inputs'] for key in required_keys_each_task[task_type]):
# print(battle['inputs'])
# print(f"Skipping battle {i} due to missing keys")
continue
valid_data.append(battle)
print(f"Total battles: {len(data)}, valid battles: {len(valid_data)}, removed battles: {len(data) - len(valid_data)}")
data = valid_data
# data = random.sample(data, 50 * 7+2)
for i, battle in enumerate(data):
battle['index'] = i
new_data = []
if task_type == 't2i_generation':
for battle in data:
prompt = battle['inputs']['prompt']
model_a = battle['model_a']
model_b = battle['model_b']
model_a_conv_id = battle['model_a_conv_id']
model_b_conv_id = battle['model_b_conv_id']
tstamp = battle['tstamp']
vote_type = battle['vote_type']
left_image_path = find_media_path(model_a_conv_id, task_type, log_dir)
right_image_path = find_media_path(model_b_conv_id, task_type, log_dir)
left_image = load_image(left_image_path)
right_image = load_image(right_image_path)
if left_image is None or right_image is None:
print(f"Skipping battle {battle['index']} due to missing images")
continue
new_data.append({
"index": battle['index'],
"tstamp": tstamp,
"prompt": prompt,
"left_model": model_a,
"left_image": left_image,
"right_model": model_b,
"right_image": right_image,
"vote_type": vote_type,
"winner": battle['winner'],
"anony": battle['anony'],
"judge": battle['judge'],
})
split = "test"
hf_dataset = create_hf_battle_dataset(new_data, split, task_type)
else:
raise ValueError(f"Task type {task_type} not supported")
print(hf_dataset)
print(f"Uploading to part {repo_id}:{split}...")
hf_dataset.push_to_hub(
repo_id=repo_id,
config_name=config_name,
split=split,
token=token,
commit_message=f"Add vision-arena {split} dataset",
)
print("Done!")
if __name__ == "__main__":
fire.Fire(main) |