Added new datasets and fixed gemini models
#9
by
Vedant-acharya
- opened
- .DS_Store +0 -0
- .gitattributes +0 -2
- AQ_met_data.csv +0 -3
- app.py +814 -1026
- ncap_funding_data.csv +0 -118
- new_system_prompt.txt +0 -65
- questions.txt +28 -30
- src.py +421 -249
- states_data.csv +0 -32
- system_prompt.txt +0 -1
- test_image.py +0 -129
- vayuchat.mplstyle +0 -93
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
.gitattributes
CHANGED
@@ -34,5 +34,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Data.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
-
CPCB_data.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
-
AQ_met_data.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Data.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
AQ_met_data.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d060bcf1c8cc8bc7c7fa8016fa573202218e3b434885e7022481fd488c5f8198
|
3 |
-
size 143177747
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -19,14 +19,6 @@ from datasets import load_dataset, get_dataset_config_info, Dataset
|
|
19 |
from PIL import Image
|
20 |
import time
|
21 |
import uuid
|
22 |
-
import asyncio
|
23 |
-
|
24 |
-
# Gemini API requires async
|
25 |
-
try:
|
26 |
-
asyncio.get_running_loop()
|
27 |
-
except RuntimeError:
|
28 |
-
loop = asyncio.new_event_loop()
|
29 |
-
asyncio.set_event_loop(loop)
|
30 |
|
31 |
# Page config with beautiful theme
|
32 |
st.set_page_config(
|
@@ -36,1117 +28,913 @@ st.set_page_config(
|
|
36 |
initial_sidebar_state="expanded"
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
st.markdown("""
|
41 |
<style>
|
42 |
-
/*
|
43 |
-
.
|
44 |
-
background: #
|
45 |
-
color:
|
46 |
-
|
47 |
-
border-radius: 7px !important;
|
48 |
-
max-width: 95% !important;
|
49 |
}
|
50 |
|
51 |
-
/*
|
52 |
-
.
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
border-radius: 12px !important;
|
57 |
-
max-width: 85% !important;
|
58 |
}
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
margin-bottom: 5px !important;
|
64 |
}
|
65 |
-
</style>
|
66 |
-
""", unsafe_allow_html=True)
|
67 |
-
|
68 |
-
# JavaScript for interactions
|
69 |
-
# st.markdown("""
|
70 |
-
# <script>
|
71 |
-
# function scrollToBottom() {
|
72 |
-
# setTimeout(function() {
|
73 |
-
# const mainContainer = document.querySelector('.main-container');
|
74 |
-
# if (mainContainer) {
|
75 |
-
# mainContainer.scrollTop = mainContainer.scrollHeight;
|
76 |
-
# }
|
77 |
-
# window.scrollTo(0, document.body.scrollHeight);
|
78 |
-
# }, 100);
|
79 |
-
# }
|
80 |
-
|
81 |
-
# function toggleCode(header) {
|
82 |
-
# const codeBlock = header.nextElementSibling;
|
83 |
-
# const toggleText = header.querySelector('.toggle-text');
|
84 |
-
|
85 |
-
# if (codeBlock.style.display === 'none') {
|
86 |
-
# codeBlock.style.display = 'block';
|
87 |
-
# toggleText.textContent = 'Click to collapse';
|
88 |
-
# } else {
|
89 |
-
# codeBlock.style.display = 'none';
|
90 |
-
# toggleText.textContent = 'Click to expand';
|
91 |
-
# }
|
92 |
-
# }
|
93 |
-
# </script>
|
94 |
-
# """, unsafe_allow_html=True)
|
95 |
-
|
96 |
-
# FORCE reload environment variables
|
97 |
-
load_dotenv(override=True)
|
98 |
-
|
99 |
-
# Get API keys
|
100 |
-
Groq_Token = os.getenv("GROQ_API_KEY")
|
101 |
-
hf_token = os.getenv("HF_TOKEN")
|
102 |
-
gemini_token = os.getenv("GEMINI_TOKEN")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"qwen3-32b": "qwen/qwen3-32b",
|
108 |
-
"gpt-oss-20b": "openai/gpt-oss-20b",
|
109 |
-
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
|
110 |
-
"llama3.3": "llama-3.3-70b-versatile",
|
111 |
-
"deepseek-R1": "deepseek-r1-distill-llama-70b",
|
112 |
-
"gemini-2.5-flash": "gemini-2.5-flash",
|
113 |
-
"gemini-2.5-pro": "gemini-2.5-pro",
|
114 |
-
"gemini-2.5-flash-lite": "gemini-2.5-flash-lite",
|
115 |
-
"gemini-2.0-flash": "gemini-2.0-flash",
|
116 |
-
"gemini-2.0-flash-lite": "gemini-2.0-flash-lite",
|
117 |
-
# "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct"
|
118 |
-
# "llama3.1": "llama-3.1-8b-instant"
|
119 |
}
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
def upload_feedback(feedback, error, output, last_prompt, code, status):
|
128 |
-
"""Enhanced feedback upload function with better logging and error handling"""
|
129 |
-
try:
|
130 |
-
if not hf_token or hf_token.strip() == "":
|
131 |
-
st.warning("Cannot upload feedback - HF_TOKEN not available")
|
132 |
-
return False
|
133 |
-
|
134 |
-
# Create comprehensive feedback data
|
135 |
-
feedback_data = {
|
136 |
-
"timestamp": datetime.now().isoformat(),
|
137 |
-
"session_id": st.session_state.session_id,
|
138 |
-
"feedback_score": feedback.get("score", ""),
|
139 |
-
"feedback_comment": feedback.get("text", ""),
|
140 |
-
"user_prompt": last_prompt,
|
141 |
-
"ai_output": str(output),
|
142 |
-
"generated_code": code or "",
|
143 |
-
"error_message": error or "",
|
144 |
-
"is_image_output": status.get("is_image", False),
|
145 |
-
"success": not bool(error)
|
146 |
-
}
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
markdown_content = f"""# VayuChat Feedback Report
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
|
160 |
-
|
161 |
-
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
```
|
170 |
|
171 |
-
|
172 |
-
-
|
173 |
-
-
|
174 |
-
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
-
|
179 |
-
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
# Upload image if it exists and is an image output
|
200 |
-
if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
|
201 |
-
try:
|
202 |
-
image_filename = f"{folder_name}_plot.png"
|
203 |
-
api.upload_file(
|
204 |
-
path_or_fileobj=output,
|
205 |
-
path_in_repo=f"data/{image_filename}",
|
206 |
-
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
|
207 |
-
repo_type="dataset",
|
208 |
-
)
|
209 |
-
except Exception as img_error:
|
210 |
-
print(f"Error uploading image: {img_error}")
|
211 |
-
|
212 |
-
# Clean up local files
|
213 |
-
if os.path.exists(markdown_local_path):
|
214 |
-
os.remove(markdown_local_path)
|
215 |
-
|
216 |
-
st.success("Feedback uploaded successfully!")
|
217 |
-
return True
|
218 |
-
|
219 |
-
except Exception as e:
|
220 |
-
st.error(f"Error uploading feedback: {e}")
|
221 |
-
print(f"Feedback upload error: {e}")
|
222 |
-
return False
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
available_models.extend(groq_models)
|
236 |
-
if gemini_token and gemini_token.strip():
|
237 |
-
available_models.extend(gemini_models)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
display: flex;
|
255 |
-
align-items: center;
|
256 |
-
justify-content: center;
|
257 |
-
gap: 12px;
|
258 |
-
border-bottom: 1px solid #e5e7eb;
|
259 |
}
|
260 |
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
263 |
}
|
264 |
|
265 |
-
.
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
font-weight: 700;
|
270 |
-
color: #2563eb;
|
271 |
}
|
272 |
|
273 |
-
/*
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
padding: 0 0;
|
286 |
-
font-size: 1.25rem;
|
287 |
-
}
|
288 |
}
|
289 |
-
</style>
|
290 |
-
<div class="header-container">
|
291 |
-
<img src="https://sustainability-lab.github.io/images/logo_light.svg" />
|
292 |
-
<div style="display: flex; flex-direction: column; line-height: 1.2;">
|
293 |
-
<h1>VayuChat</h1>
|
294 |
-
<span>AI Air Quality Analysis • Sustainability Lab, IIT Gandhinagar</span>
|
295 |
-
</div>
|
296 |
-
</div>
|
297 |
-
""", unsafe_allow_html=True)
|
298 |
-
|
299 |
-
# Load data with caching for better performance
|
300 |
-
@st.cache_data
|
301 |
-
def load_data():
|
302 |
-
return preprocess_and_load_df(join(self_path, "Data.csv"))
|
303 |
-
|
304 |
-
try:
|
305 |
-
df = load_data()
|
306 |
-
# Data loaded silently - no success message needed
|
307 |
-
except Exception as e:
|
308 |
-
st.error(f"Error loading data: {e}")
|
309 |
-
st.stop()
|
310 |
-
|
311 |
-
inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
312 |
-
image_path = "IITGN_Logo.png"
|
313 |
-
|
314 |
-
# Clean sidebar
|
315 |
-
with st.sidebar:
|
316 |
-
# Model selector at top of sidebar for easy access
|
317 |
-
model_name = st.selectbox(
|
318 |
-
"🤖 AI Model:",
|
319 |
-
available_models,
|
320 |
-
index=default_index,
|
321 |
-
help="Choose your AI model - easily accessible without scrolling!"
|
322 |
-
)
|
323 |
-
|
324 |
-
st.markdown("---")
|
325 |
-
|
326 |
-
# Quick Queries Section
|
327 |
-
st.markdown("### 💭 Quick Queries")
|
328 |
-
|
329 |
-
# Load quick prompts with caching
|
330 |
-
@st.cache_data
|
331 |
-
def load_questions():
|
332 |
-
questions = []
|
333 |
-
questions_file = join(self_path, "questions.txt")
|
334 |
-
if os.path.exists(questions_file):
|
335 |
-
try:
|
336 |
-
with open(questions_file, 'r', encoding='utf-8') as f:
|
337 |
-
content = f.read()
|
338 |
-
questions = [q.strip() for q in content.split("\n") if q.strip()]
|
339 |
-
except Exception as e:
|
340 |
-
questions = []
|
341 |
-
return questions
|
342 |
-
|
343 |
-
questions = load_questions()
|
344 |
-
|
345 |
-
# Add default prompts if file doesn't exist or is empty
|
346 |
-
if not questions:
|
347 |
-
questions = [
|
348 |
-
"Which month had highest pollution?",
|
349 |
-
"Which city has worst air quality?",
|
350 |
-
"Show annual PM2.5 average",
|
351 |
-
"Plot monthly average PM2.5 for 2023",
|
352 |
-
"List all cities by pollution level",
|
353 |
-
"Compare winter vs summer pollution",
|
354 |
-
"Show seasonal pollution patterns",
|
355 |
-
"Which areas exceed WHO guidelines?",
|
356 |
-
"What are peak pollution hours?",
|
357 |
-
"Show PM10 vs PM2.5 comparison",
|
358 |
-
"Which station records highest variability in PM2.5?",
|
359 |
-
"Calculate pollution improvement rate year-over-year by city",
|
360 |
-
"Identify cities with PM2.5 levels consistently above 50 μg/m³ for >6 months",
|
361 |
-
"Find correlation between PM2.5 and PM10 across different seasons and cities",
|
362 |
-
"Compare weekday vs weekend levels",
|
363 |
-
"Plot yearly trend analysis",
|
364 |
-
"Show pollution distribution by city",
|
365 |
-
"Create correlation plot between pollutants"
|
366 |
-
]
|
367 |
-
|
368 |
-
# Quick query buttons in sidebar
|
369 |
-
selected_prompt = None
|
370 |
-
|
371 |
-
|
372 |
-
# Show all questions but in a scrollable format
|
373 |
-
if len(questions) > 0:
|
374 |
-
st.markdown("**Select a question to analyze:**")
|
375 |
-
|
376 |
-
# Getting Started section with simple questions
|
377 |
-
getting_started_questions = questions[:10] # First 10 simple questions
|
378 |
-
with st.expander("🚀 Getting Started - Simple Questions", expanded=True):
|
379 |
-
for i, q in enumerate(getting_started_questions):
|
380 |
-
if st.button(q, key=f"start_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
381 |
-
selected_prompt = q
|
382 |
-
st.session_state.last_selected_prompt = q
|
383 |
-
|
384 |
-
# Create expandable sections for better organization
|
385 |
-
with st.expander("📊 NCAP Funding & Policy Analysis", expanded=False):
|
386 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ncap', 'funding', 'investment', 'rupee'])]):
|
387 |
-
if st.button(q, key=f"ncap_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
388 |
-
selected_prompt = q
|
389 |
-
st.session_state.last_selected_prompt = q
|
390 |
-
|
391 |
-
with st.expander("🌬️ Meteorology & Environmental Factors", expanded=False):
|
392 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'])]):
|
393 |
-
if st.button(q, key=f"met_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
394 |
-
selected_prompt = q
|
395 |
-
st.session_state.last_selected_prompt = q
|
396 |
-
|
397 |
-
with st.expander("👥 Population & Demographics", expanded=False):
|
398 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['population', 'capita', 'density', 'exposure'])]):
|
399 |
-
if st.button(q, key=f"pop_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
400 |
-
selected_prompt = q
|
401 |
-
st.session_state.last_selected_prompt = q
|
402 |
-
|
403 |
-
with st.expander("🏭 Multi-Pollutant Analysis", expanded=False):
|
404 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction'])]):
|
405 |
-
if st.button(q, key=f"multi_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
406 |
-
selected_prompt = q
|
407 |
-
st.session_state.last_selected_prompt = q
|
408 |
-
|
409 |
-
with st.expander("📈 Other Analysis Questions", expanded=False):
|
410 |
-
remaining_questions = [q for q in questions if not any(any(word in q.lower() for word in category) for category in [
|
411 |
-
['ncap', 'funding', 'investment', 'rupee'],
|
412 |
-
['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'],
|
413 |
-
['population', 'capita', 'density', 'exposure'],
|
414 |
-
['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction']
|
415 |
-
])]
|
416 |
-
for i, q in enumerate(remaining_questions):
|
417 |
-
if st.button(q, key=f"other_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
418 |
-
selected_prompt = q
|
419 |
-
st.session_state.last_selected_prompt = q
|
420 |
-
|
421 |
-
st.markdown("---")
|
422 |
-
|
423 |
-
|
424 |
-
# Clear Chat Button
|
425 |
-
if st.button("Clear Chat", use_container_width=True):
|
426 |
-
st.session_state.responses = []
|
427 |
-
st.session_state.processing = False
|
428 |
-
st.session_state.session_id = str(uuid.uuid4())
|
429 |
-
try:
|
430 |
-
st.rerun()
|
431 |
-
except AttributeError:
|
432 |
-
st.experimental_rerun()
|
433 |
-
|
434 |
-
# Initialize session state first
|
435 |
-
if "responses" not in st.session_state:
|
436 |
-
st.session_state.responses = []
|
437 |
-
if "processing" not in st.session_state:
|
438 |
-
st.session_state.processing = False
|
439 |
-
if "session_id" not in st.session_state:
|
440 |
-
st.session_state.session_id = str(uuid.uuid4())
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
def show_custom_response(response):
|
446 |
-
"""Custom response display function with improved styling"""
|
447 |
-
role = response.get("role", "assistant")
|
448 |
-
content = response.get("content", "")
|
449 |
-
|
450 |
-
if role == "user":
|
451 |
-
# User message with right alignment - CSS now loaded at top of file
|
452 |
-
st.markdown(f"""
|
453 |
-
<div style='display: flex; justify-content: flex-end; margin: 1rem 0;'>
|
454 |
-
<div class='user-message'>
|
455 |
-
{content}
|
456 |
-
</div>
|
457 |
-
</div>
|
458 |
-
""", unsafe_allow_html=True)
|
459 |
-
elif role == "assistant":
|
460 |
-
# Check if content is an image filename - don't display the filename text
|
461 |
-
is_image_path = isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg', '.jpeg'])
|
462 |
-
|
463 |
-
# Check if content is a pandas DataFrame
|
464 |
-
import pandas as pd
|
465 |
-
is_dataframe = isinstance(content, pd.DataFrame)
|
466 |
-
|
467 |
-
# Check for errors first and display them with special styling
|
468 |
-
error = response.get("error")
|
469 |
-
timestamp = response.get("timestamp", "")
|
470 |
-
timestamp_display = f" • {timestamp}" if timestamp else ""
|
471 |
-
|
472 |
-
if error:
|
473 |
-
st.markdown(f"""
|
474 |
-
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
475 |
-
<div class='assistant-message'>
|
476 |
-
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
477 |
-
<div class='error-message'>
|
478 |
-
⚠️ <strong>Error:</strong> {error}
|
479 |
-
<br><br>
|
480 |
-
<em>💡 Try rephrasing your question or being more specific about what you'd like to analyze.</em>
|
481 |
-
</div>
|
482 |
-
</div>
|
483 |
-
</div>
|
484 |
-
""", unsafe_allow_html=True)
|
485 |
-
# Assistant message with left alignment - reduced margins
|
486 |
-
elif not is_image_path and not is_dataframe:
|
487 |
-
st.markdown(f"""
|
488 |
-
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
489 |
-
<div class='assistant-message'>
|
490 |
-
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
491 |
-
{content if isinstance(content, str) else str(content)}
|
492 |
-
</div>
|
493 |
-
</div>
|
494 |
-
""", unsafe_allow_html=True)
|
495 |
-
elif is_dataframe:
|
496 |
-
# Display DataFrame with nice formatting
|
497 |
-
st.markdown(f"""
|
498 |
-
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
499 |
-
<div class='assistant-message'>
|
500 |
-
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
501 |
-
Here are the results:
|
502 |
-
</div>
|
503 |
-
</div>
|
504 |
-
""", unsafe_allow_html=True)
|
505 |
-
|
506 |
-
# Add context info for dataframes
|
507 |
-
st.markdown("""
|
508 |
-
<div class='context-info'>
|
509 |
-
💡 This table is interactive - click column headers to sort, or scroll to view all data.
|
510 |
-
</div>
|
511 |
-
""", unsafe_allow_html=True)
|
512 |
-
|
513 |
-
# Display dataframe with built-in download functionality
|
514 |
-
st.dataframe(
|
515 |
-
content,
|
516 |
-
use_container_width=True,
|
517 |
-
hide_index=True,
|
518 |
-
column_config=None
|
519 |
-
)
|
520 |
-
|
521 |
-
# Show generated code with Streamlit expander
|
522 |
-
if response.get("gen_code"):
|
523 |
-
with st.expander("📋 View Generated Code", expanded=False):
|
524 |
-
st.code(response["gen_code"], language="python")
|
525 |
-
|
526 |
-
# Check if this is a plot response (plots are now displayed directly via st.pyplot)
|
527 |
-
is_plot_response = isinstance(content, str) and "Plot displayed successfully" in content
|
528 |
-
|
529 |
-
# Try to display image if content is a file path (for backward compatibility)
|
530 |
-
try:
|
531 |
-
if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
|
532 |
-
if os.path.exists(content):
|
533 |
-
# Display image with better styling and reasonable width
|
534 |
-
st.markdown("""
|
535 |
-
<div style='margin: 1rem 0; display: flex; justify-content: center;'>
|
536 |
-
</div>
|
537 |
-
""", unsafe_allow_html=True)
|
538 |
-
st.image(content, width=1080, caption="Generated Visualization")
|
539 |
-
return {"is_image": True}
|
540 |
-
# Also handle case where content shows filename but we want to show image
|
541 |
-
elif isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg']):
|
542 |
-
# Extract potential filename from content
|
543 |
-
import re
|
544 |
-
filename_match = re.search(r'([^/\\]+\.(?:png|jpg|jpeg))', content)
|
545 |
-
if filename_match:
|
546 |
-
filename = filename_match.group(1)
|
547 |
-
if os.path.exists(filename):
|
548 |
-
st.markdown("""
|
549 |
-
<div style='margin: 1rem 0; display: flex; justify-content: center;'>
|
550 |
-
</div>
|
551 |
-
""", unsafe_allow_html=True)
|
552 |
-
st.image(filename, width=1080, caption="Generated Visualization")
|
553 |
-
return {"is_image": True}
|
554 |
-
except:
|
555 |
-
pass
|
556 |
-
|
557 |
-
return {"is_image": False}
|
558 |
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
error = response.get("error", "")
|
569 |
-
output = response.get("content", "")
|
570 |
-
last_prompt = response.get("last_prompt", "")
|
571 |
-
code = response.get("gen_code", "")
|
572 |
-
|
573 |
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
st.markdown(f"""
|
583 |
-
<div style='
|
584 |
-
background: linear-gradient(135deg, #ecfdf5 0%, #d1fae5 100%);
|
585 |
-
border: 1px solid #a7f3d0;
|
586 |
-
border-radius: 8px;
|
587 |
-
padding: 0.75rem 1rem;
|
588 |
-
display: flex;
|
589 |
-
align-items: center;
|
590 |
-
gap: 8px;
|
591 |
-
'>
|
592 |
-
<span style='font-size: 1.1rem;'>{feedback_data.get('score', '')}</span>
|
593 |
-
<span style='color: #059669; font-weight: 500; font-size: 0.9rem;'>
|
594 |
-
Thanks for your feedback!
|
595 |
-
</span>
|
596 |
-
</div>
|
597 |
-
""", unsafe_allow_html=True)
|
598 |
-
with col2:
|
599 |
-
if st.button("🔄 Retry", key=f"retry_{response_id}", use_container_width=True):
|
600 |
-
user_prompt = ""
|
601 |
-
if response_id > 0:
|
602 |
-
user_prompt = st.session_state.responses[response_id-1].get("content", "")
|
603 |
-
if user_prompt:
|
604 |
-
if response_id > 0:
|
605 |
-
retry_prompt = st.session_state.responses[response_id-1].get("content", "")
|
606 |
-
del st.session_state.responses[response_id]
|
607 |
-
del st.session_state.responses[response_id-1]
|
608 |
-
st.session_state.follow_up_prompt = retry_prompt
|
609 |
-
st.rerun()
|
610 |
-
else:
|
611 |
-
# Clean feedback and retry layout
|
612 |
-
col1, col2, col3, col4 = st.columns([2, 2, 1, 1])
|
613 |
-
|
614 |
-
with col1:
|
615 |
-
if st.button("✨ Excellent", key=f"{feedback_key}_excellent", use_container_width=True):
|
616 |
-
feedback = {"score": "✨ Excellent", "text": ""}
|
617 |
-
st.session_state.responses[response_id]["feedback"] = feedback
|
618 |
-
st.rerun()
|
619 |
-
|
620 |
-
with col2:
|
621 |
-
if st.button("🔧 Needs work", key=f"{feedback_key}_poor", use_container_width=True):
|
622 |
-
feedback = {"score": "🔧 Needs work", "text": ""}
|
623 |
-
st.session_state.responses[response_id]["feedback"] = feedback
|
624 |
-
st.rerun()
|
625 |
-
|
626 |
-
with col4:
|
627 |
-
if st.button("🔄 Retry", key=f"retry_{response_id}", use_container_width=True):
|
628 |
-
user_prompt = ""
|
629 |
-
if response_id > 0:
|
630 |
-
user_prompt = st.session_state.responses[response_id-1].get("content", "")
|
631 |
-
if user_prompt:
|
632 |
-
if response_id > 0:
|
633 |
-
retry_prompt = st.session_state.responses[response_id-1].get("content", "")
|
634 |
-
del st.session_state.responses[response_id]
|
635 |
-
del st.session_state.responses[response_id-1]
|
636 |
-
st.session_state.follow_up_prompt = retry_prompt
|
637 |
-
st.rerun()
|
638 |
|
639 |
-
|
640 |
-
|
|
|
|
|
|
|
|
|
|
|
641 |
|
642 |
-
|
643 |
-
|
644 |
-
|
|
|
|
|
|
|
|
|
|
|
645 |
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
|
651 |
-
|
652 |
-
|
653 |
-
#
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
|
|
|
|
659 |
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
st.session_state.responses.append(user_response)
|
664 |
-
|
665 |
-
# Set processing state
|
666 |
-
st.session_state.processing = True
|
667 |
-
st.session_state.current_model = model_name
|
668 |
-
st.session_state.current_question = prompt
|
669 |
-
|
670 |
-
# Rerun to show processing indicator
|
671 |
-
st.rerun()
|
672 |
|
673 |
-
|
674 |
-
|
675 |
-
#
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
}
|
693 |
-
</style>
|
694 |
-
""", unsafe_allow_html=True)
|
695 |
-
|
696 |
-
prompt = st.session_state.get("current_question")
|
697 |
-
model_name = st.session_state.get("current_model")
|
698 |
-
|
699 |
-
try:
|
700 |
-
response = ask_question(model_name=model_name, question=prompt)
|
701 |
-
|
702 |
-
if not isinstance(response, dict):
|
703 |
-
response = {
|
704 |
-
"role": "assistant",
|
705 |
-
"content": "Error: Invalid response format",
|
706 |
-
"gen_code": "",
|
707 |
-
"ex_code": "",
|
708 |
-
"last_prompt": prompt,
|
709 |
-
"error": "Invalid response format",
|
710 |
-
"timestamp": datetime.now().strftime("%H:%M")
|
711 |
-
}
|
712 |
-
|
713 |
-
response.setdefault("role", "assistant")
|
714 |
-
response.setdefault("content", "No content generated")
|
715 |
-
response.setdefault("gen_code", "")
|
716 |
-
response.setdefault("ex_code", "")
|
717 |
-
response.setdefault("last_prompt", prompt)
|
718 |
-
response.setdefault("error", None)
|
719 |
-
response.setdefault("timestamp", datetime.now().strftime("%H:%M"))
|
720 |
-
|
721 |
-
except Exception as e:
|
722 |
-
response = {
|
723 |
-
"role": "assistant",
|
724 |
-
"content": f"Sorry, I encountered an error: {str(e)}",
|
725 |
-
"gen_code": "",
|
726 |
-
"ex_code": "",
|
727 |
-
"last_prompt": prompt,
|
728 |
-
"error": str(e),
|
729 |
-
"timestamp": datetime.now().strftime("%H:%M")
|
730 |
-
}
|
731 |
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
# Clear processing state
|
738 |
-
if "current_model" in st.session_state:
|
739 |
-
del st.session_state.current_model
|
740 |
-
if "current_question" in st.session_state:
|
741 |
-
del st.session_state.current_question
|
742 |
-
|
743 |
-
st.rerun()
|
744 |
|
745 |
-
|
746 |
-
|
|
|
|
|
747 |
|
748 |
-
|
749 |
-
|
750 |
-
|
|
|
|
|
|
|
|
|
|
|
751 |
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
|
764 |
-
|
765 |
-
|
766 |
-
st.markdown("""
|
767 |
-
<style>
|
768 |
-
/* Clean app background */
|
769 |
-
.stApp {
|
770 |
-
background-color: #ffffff;
|
771 |
-
color: #212529;
|
772 |
-
font-family: 'Segoe UI', sans-serif;
|
773 |
}
|
774 |
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
|
|
|
|
780 |
}
|
781 |
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
}
|
786 |
|
787 |
-
|
788 |
-
|
789 |
-
|
|
|
790 |
}
|
791 |
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
|
|
|
|
|
|
|
|
797 |
}
|
798 |
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
padding
|
|
|
804 |
}
|
805 |
|
806 |
-
|
807 |
-
|
|
|
|
|
|
|
808 |
}
|
809 |
|
810 |
-
|
811 |
-
background: #
|
812 |
-
|
|
|
|
|
|
|
813 |
}
|
814 |
|
815 |
-
|
816 |
-
background: #
|
817 |
-
border-
|
|
|
|
|
|
|
|
|
818 |
}
|
819 |
|
820 |
-
|
821 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
}
|
|
|
|
|
823 |
|
824 |
-
|
825 |
-
.
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
|
|
|
|
|
|
|
|
831 |
}
|
832 |
|
833 |
-
|
834 |
-
.
|
835 |
-
text
|
836 |
-
|
837 |
-
|
838 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
839 |
}
|
840 |
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
851 |
|
852 |
-
|
853 |
-
.
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
|
864 |
-
.quick-prompt-btn {
|
865 |
-
background-color: #0d6efd;
|
866 |
-
color: white;
|
867 |
-
border: none;
|
868 |
-
padding: 8px 16px;
|
869 |
-
border-radius: 20px;
|
870 |
-
font-size: 0.9rem;
|
871 |
-
cursor: pointer;
|
872 |
-
transition: all 0.2s ease;
|
873 |
-
white-space: nowrap;
|
874 |
-
}
|
875 |
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
max-width: 95%;
|
888 |
-
}
|
889 |
|
890 |
-
.
|
891 |
-
|
892 |
-
opacity: 0.9;
|
893 |
-
margin-bottom: 3px;
|
894 |
-
}
|
895 |
|
896 |
-
|
897 |
-
.
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
|
|
|
|
910 |
|
911 |
-
/* Processing indicator */
|
912 |
-
.processing-indicator {
|
913 |
-
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
|
914 |
-
color: #333;
|
915 |
-
padding: 1rem 1.5rem;
|
916 |
-
border-radius: 12px;
|
917 |
-
margin: 1rem 0;
|
918 |
-
margin-left: 0;
|
919 |
-
margin-right: auto;
|
920 |
-
max-width: 70%;
|
921 |
-
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
922 |
-
animation: pulse 2s infinite;
|
923 |
-
}
|
924 |
|
925 |
-
@keyframes pulse {
|
926 |
-
0% { opacity: 1; }
|
927 |
-
50% { opacity: 0.7; }
|
928 |
-
100% { opacity: 1; }
|
929 |
-
}
|
930 |
|
931 |
-
/* Feedback box */
|
932 |
-
.feedback-section {
|
933 |
-
background-color: #f8f9fa;
|
934 |
-
border: 1px solid #dee2e6;
|
935 |
-
padding: 1rem;
|
936 |
-
border-radius: 8px;
|
937 |
-
margin: 1rem 0;
|
938 |
-
}
|
939 |
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
948 |
|
949 |
-
.error-message {
|
950 |
-
background-color: #f8d7da;
|
951 |
-
color: #842029;
|
952 |
-
padding: 1rem;
|
953 |
-
border-radius: 6px;
|
954 |
-
border: 1px solid #f5c2c7;
|
955 |
-
}
|
956 |
|
957 |
-
|
958 |
-
#
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
#
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
# }
|
970 |
-
|
971 |
-
# .stChatInput:focus {
|
972 |
-
# border-color: #3b82f6 !important;
|
973 |
-
# box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important;
|
974 |
-
# outline: none !important;
|
975 |
-
# }
|
976 |
-
|
977 |
-
/* Chat input container */
|
978 |
-
.stChatInput > div {
|
979 |
-
padding: 0 !important;
|
980 |
-
margin: 0 !important;
|
981 |
-
}
|
982 |
|
983 |
-
/* Chat input text area */
|
984 |
-
# .stChatInput textarea {
|
985 |
-
# border: none !important;
|
986 |
-
# background: transparent !important;
|
987 |
-
# padding: 0 !important;
|
988 |
-
# margin: 0 !important;
|
989 |
-
# font-size: 1rem !important;
|
990 |
-
# line-height: 1.5 !important;
|
991 |
-
# resize: none !important;
|
992 |
-
# outline: none !important;
|
993 |
-
# }
|
994 |
-
|
995 |
-
/* Chat input placeholder */
|
996 |
-
# .stChatInput textarea::placeholder {
|
997 |
-
# color: #9ca3af !important;
|
998 |
-
# font-style: normal !important;
|
999 |
-
# }
|
1000 |
-
|
1001 |
-
.st-emotion-cache-f4ro0r {
|
1002 |
-
align-items = center;
|
1003 |
-
}
|
1004 |
|
1005 |
-
|
1006 |
-
[
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1015 |
|
1016 |
-
|
1017 |
-
|
1018 |
-
padding-bottom: 100px !important;
|
1019 |
-
}
|
1020 |
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
color: white !important;
|
1025 |
-
border: none !important;
|
1026 |
-
border-radius: 12px !important;
|
1027 |
-
font-weight: 600 !important;
|
1028 |
-
transition: background-color 0.2s ease !important;
|
1029 |
-
}
|
1030 |
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
|
|
1034 |
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
|
|
|
|
1041 |
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1045 |
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1050 |
}
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
.
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
1068 |
-
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
.
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
font-size: 0.8rem;
|
1090 |
-
}
|
1091 |
-
|
1092 |
-
.toggle-text {
|
1093 |
-
font-size: 0.75rem;
|
1094 |
-
color: #64748b;
|
1095 |
-
font-weight: 500;
|
1096 |
-
}
|
1097 |
-
|
1098 |
-
.code-block {
|
1099 |
-
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
|
1100 |
-
color: #e2e8f0;
|
1101 |
-
padding: 1.5rem;
|
1102 |
-
font-family: 'SF Mono', 'Monaco', 'Menlo', 'Consolas', monospace;
|
1103 |
-
font-size: 0.875rem;
|
1104 |
-
overflow-x: auto;
|
1105 |
-
line-height: 1.6;
|
1106 |
-
border-radius: 0 0 12px 12px;
|
1107 |
-
}
|
1108 |
|
1109 |
-
.
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
|
|
|
|
|
|
|
|
|
|
1116 |
|
1117 |
-
|
1118 |
-
|
1119 |
-
color: #1e293b;
|
1120 |
-
line-height: 1.6;
|
1121 |
-
margin-bottom: 1rem;
|
1122 |
-
}
|
1123 |
|
1124 |
-
|
1125 |
-
|
1126 |
-
|
1127 |
-
border-radius: 4px;
|
1128 |
-
font-weight: 600;
|
1129 |
-
color: #92400e;
|
1130 |
-
}
|
1131 |
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1140 |
|
1141 |
-
/* Hide default menu and footer */
|
1142 |
-
#MainMenu {visibility: hidden;}
|
1143 |
-
footer {visibility: hidden;}
|
1144 |
-
header {visibility: hidden;}
|
1145 |
|
1146 |
-
/* Auto scroll */
|
1147 |
-
.main-container {
|
1148 |
-
height: 70vh;
|
1149 |
-
overflow-y: auto;
|
1150 |
-
}
|
1151 |
-
</style>
|
1152 |
-
""", unsafe_allow_html=True)
|
|
|
19 |
from PIL import Image
|
20 |
import time
|
21 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Page config with beautiful theme
|
24 |
st.set_page_config(
|
|
|
28 |
initial_sidebar_state="expanded"
|
29 |
)
|
30 |
|
31 |
+
# Custom CSS for beautiful styling
|
32 |
st.markdown("""
|
33 |
<style>
|
34 |
+
/* Clean app background */
|
35 |
+
.stApp {
|
36 |
+
background-color: #ffffff;
|
37 |
+
color: #212529;
|
38 |
+
font-family: 'Segoe UI', sans-serif;
|
|
|
|
|
39 |
}
|
40 |
|
41 |
+
/* Reduce main container padding */
|
42 |
+
.main .block-container {
|
43 |
+
padding-top: 0.5rem;
|
44 |
+
padding-bottom: 3rem;
|
45 |
+
max-width: 100%;
|
|
|
|
|
46 |
}
|
47 |
|
48 |
+
/* Remove excessive spacing */
|
49 |
+
.element-container {
|
50 |
+
margin-bottom: 0.5rem !important;
|
|
|
51 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
/* Fix sidebar spacing */
|
54 |
+
[data-testid="stSidebar"] .element-container {
|
55 |
+
margin-bottom: 0.25rem !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
}
|
57 |
|
58 |
+
/* Sidebar */
|
59 |
+
[data-testid="stSidebar"] {
|
60 |
+
background-color: #f8f9fa;
|
61 |
+
border-right: 1px solid #dee2e6;
|
62 |
+
padding: 1rem;
|
63 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
/* Optimize sidebar scrolling */
|
66 |
+
[data-testid="stSidebar"] > div:first-child {
|
67 |
+
height: 100vh;
|
68 |
+
overflow-y: auto;
|
69 |
+
padding-bottom: 2rem;
|
70 |
+
}
|
|
|
71 |
|
72 |
+
[data-testid="stSidebar"]::-webkit-scrollbar {
|
73 |
+
width: 6px;
|
74 |
+
}
|
75 |
|
76 |
+
[data-testid="stSidebar"]::-webkit-scrollbar-track {
|
77 |
+
background: #f1f1f1;
|
78 |
+
border-radius: 3px;
|
79 |
+
}
|
80 |
|
81 |
+
[data-testid="stSidebar"]::-webkit-scrollbar-thumb {
|
82 |
+
background: #c1c1c1;
|
83 |
+
border-radius: 3px;
|
84 |
+
}
|
85 |
|
86 |
+
[data-testid="stSidebar"]::-webkit-scrollbar-thumb:hover {
|
87 |
+
background: #a1a1a1;
|
88 |
+
}
|
|
|
89 |
|
90 |
+
/* Main title */
|
91 |
+
.main-title {
|
92 |
+
text-align: center;
|
93 |
+
color: #343a40;
|
94 |
+
font-size: 2.5rem;
|
95 |
+
font-weight: 700;
|
96 |
+
margin-bottom: 0.5rem;
|
97 |
+
}
|
98 |
|
99 |
+
/* Subtitle */
|
100 |
+
.subtitle {
|
101 |
+
text-align: center;
|
102 |
+
color: #6c757d;
|
103 |
+
font-size: 1.1rem;
|
104 |
+
margin-bottom: 1.5rem;
|
105 |
+
}
|
106 |
|
107 |
+
/* Instructions */
|
108 |
+
.instructions {
|
109 |
+
background-color: #f1f3f5;
|
110 |
+
border-left: 4px solid #0d6efd;
|
111 |
+
padding: 1rem;
|
112 |
+
margin-bottom: 1.5rem;
|
113 |
+
border-radius: 6px;
|
114 |
+
color: #495057;
|
115 |
+
text-align: left;
|
116 |
+
}
|
117 |
|
118 |
+
/* Quick prompt buttons */
|
119 |
+
.quick-prompt-container {
|
120 |
+
display: flex;
|
121 |
+
flex-wrap: wrap;
|
122 |
+
gap: 8px;
|
123 |
+
margin-bottom: 1.5rem;
|
124 |
+
padding: 1rem;
|
125 |
+
background-color: #f8f9fa;
|
126 |
+
border-radius: 10px;
|
127 |
+
border: 1px solid #dee2e6;
|
128 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
.quick-prompt-btn {
|
131 |
+
background-color: #0d6efd;
|
132 |
+
color: white;
|
133 |
+
border: none;
|
134 |
+
padding: 8px 16px;
|
135 |
+
border-radius: 20px;
|
136 |
+
font-size: 0.9rem;
|
137 |
+
cursor: pointer;
|
138 |
+
transition: all 0.2s ease;
|
139 |
+
white-space: nowrap;
|
140 |
+
}
|
|
|
|
|
|
|
141 |
|
142 |
+
.quick-prompt-btn:hover {
|
143 |
+
background-color: #0b5ed7;
|
144 |
+
transform: translateY(-2px);
|
145 |
+
}
|
146 |
|
147 |
+
/* User message styling */
|
148 |
+
.user-message {
|
149 |
+
background: #3b82f6;
|
150 |
+
color: white;
|
151 |
+
padding: 0.75rem 1rem;
|
152 |
+
border-radius: 12px;
|
153 |
+
max-width: 70%;
|
154 |
+
}
|
155 |
|
156 |
+
.user-info {
|
157 |
+
font-size: 0.875rem;
|
158 |
+
opacity: 0.9;
|
159 |
+
margin-bottom: 3px;
|
|
|
|
|
|
|
|
|
|
|
160 |
}
|
161 |
|
162 |
+
/* Assistant message styling */
|
163 |
+
.assistant-message {
|
164 |
+
background: #f1f5f9;
|
165 |
+
color: #334155;
|
166 |
+
padding: 0.75rem 1rem;
|
167 |
+
border-radius: 12px;
|
168 |
+
max-width: 70%;
|
169 |
}
|
170 |
|
171 |
+
.assistant-info {
|
172 |
+
font-size: 0.875rem;
|
173 |
+
color: #6b7280;
|
174 |
+
margin-bottom: 5px;
|
|
|
|
|
175 |
}
|
176 |
|
177 |
+
/* Processing indicator */
|
178 |
+
.processing-indicator {
|
179 |
+
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
|
180 |
+
color: #333;
|
181 |
+
padding: 1rem 1.5rem;
|
182 |
+
border-radius: 12px;
|
183 |
+
margin: 1rem 0;
|
184 |
+
margin-left: 0;
|
185 |
+
margin-right: auto;
|
186 |
+
max-width: 70%;
|
187 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
188 |
+
animation: pulse 2s infinite;
|
|
|
|
|
|
|
189 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
@keyframes pulse {
|
192 |
+
0% { opacity: 1; }
|
193 |
+
50% { opacity: 0.7; }
|
194 |
+
100% { opacity: 1; }
|
195 |
+
}
|
196 |
|
197 |
+
/* Feedback box */
|
198 |
+
.feedback-section {
|
199 |
+
background-color: #f8f9fa;
|
200 |
+
border: 1px solid #dee2e6;
|
201 |
+
padding: 1rem;
|
202 |
+
border-radius: 8px;
|
203 |
+
margin: 1rem 0;
|
204 |
+
}
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
/* Success and error messages */
|
207 |
+
.success-message {
|
208 |
+
background-color: #d1e7dd;
|
209 |
+
color: #0f5132;
|
210 |
+
padding: 1rem;
|
211 |
+
border-radius: 6px;
|
212 |
+
border: 1px solid #badbcc;
|
213 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
.error-message {
|
216 |
+
background-color: #f8d7da;
|
217 |
+
color: #842029;
|
218 |
+
padding: 1rem;
|
219 |
+
border-radius: 6px;
|
220 |
+
border: 1px solid #f5c2c7;
|
221 |
+
}
|
222 |
|
223 |
+
/* Chat input styling like mockup */
|
224 |
+
.stChatInput {
|
225 |
+
border-radius: 8px;
|
226 |
+
border: 1px solid #d1d5db;
|
227 |
+
background: #ffffff;
|
228 |
+
padding: 0.75rem 1rem;
|
229 |
+
font-size: 1rem;
|
230 |
+
}
|
231 |
|
232 |
+
.stChatInput:focus {
|
233 |
+
border-color: #3b82f6;
|
234 |
+
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1);
|
235 |
+
}
|
236 |
|
237 |
+
/* Button */
|
238 |
+
.stButton > button {
|
239 |
+
background-color: #0d6efd;
|
240 |
+
color: white;
|
241 |
+
border-radius: 6px;
|
242 |
+
padding: 0.5rem 1.25rem;
|
243 |
+
border: none;
|
244 |
+
font-weight: 600;
|
245 |
+
transition: background-color 0.2s ease;
|
246 |
+
}
|
247 |
|
248 |
+
.stButton > button:hover {
|
249 |
+
background-color: #0b5ed7;
|
250 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
/* Sidebar button styling - smaller, left-aligned */
|
253 |
+
[data-testid="stSidebar"] .stButton > button {
|
254 |
+
background-color: #f8fafc;
|
255 |
+
color: #475569;
|
256 |
+
border: 1px solid #e2e8f0;
|
257 |
+
padding: 0.375rem 0.75rem;
|
258 |
+
font-size: 0.65rem;
|
259 |
+
font-weight: normal;
|
260 |
+
text-align: left;
|
261 |
+
white-space: normal;
|
262 |
+
height: auto;
|
263 |
+
line-height: 1.2;
|
264 |
+
transition: all 0.2s ease;
|
265 |
+
cursor: pointer;
|
266 |
+
margin-bottom: 0.25rem;
|
267 |
+
width: 100%;
|
268 |
+
display: flex;
|
269 |
+
justify-content: flex-start;
|
270 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
[data-testid="stSidebar"] .stButton > button:hover {
|
273 |
+
background-color: #e0f2fe;
|
274 |
+
border-color: #0ea5e9;
|
275 |
+
color: #0c4a6e;
|
276 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
[data-testid="stSidebar"] .stButton > button:active {
|
279 |
+
transform: translateY(0);
|
280 |
+
box-shadow: none;
|
281 |
+
}
|
282 |
|
283 |
+
/* Code container styling */
|
284 |
+
.code-container {
|
285 |
+
margin: 1rem 0;
|
286 |
+
border: 1px solid #d1d5db;
|
287 |
+
border-radius: 12px;
|
288 |
+
background: white;
|
289 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
290 |
+
}
|
291 |
|
292 |
+
.code-header {
|
293 |
+
display: flex;
|
294 |
+
justify-content: space-between;
|
295 |
+
align-items: center;
|
296 |
+
padding: 0.875rem 1.25rem;
|
297 |
+
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%);
|
298 |
+
border-bottom: 1px solid #e2e8f0;
|
299 |
+
cursor: pointer;
|
300 |
+
transition: all 0.2s ease;
|
301 |
+
border-radius: 12px 12px 0 0;
|
302 |
+
}
|
303 |
|
304 |
+
.code-header:hover {
|
305 |
+
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
}
|
307 |
|
308 |
+
.code-title {
|
309 |
+
font-size: 0.9rem;
|
310 |
+
font-weight: 600;
|
311 |
+
color: #1e293b;
|
312 |
+
display: flex;
|
313 |
+
align-items: center;
|
314 |
+
gap: 0.5rem;
|
315 |
}
|
316 |
|
317 |
+
.code-title:before {
|
318 |
+
content: "⚡";
|
319 |
+
font-size: 0.8rem;
|
320 |
}
|
321 |
|
322 |
+
.toggle-text {
|
323 |
+
font-size: 0.75rem;
|
324 |
+
color: #64748b;
|
325 |
+
font-weight: 500;
|
326 |
}
|
327 |
|
328 |
+
.code-block {
|
329 |
+
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
|
330 |
+
color: #e2e8f0;
|
331 |
+
padding: 1.5rem;
|
332 |
+
font-family: 'SF Mono', 'Monaco', 'Menlo', 'Consolas', monospace;
|
333 |
+
font-size: 0.875rem;
|
334 |
+
overflow-x: auto;
|
335 |
+
line-height: 1.6;
|
336 |
+
border-radius: 0 0 12px 12px;
|
337 |
}
|
338 |
|
339 |
+
.answer-container {
|
340 |
+
background: #f8fafc;
|
341 |
+
border: 1px solid #e2e8f0;
|
342 |
+
border-radius: 8px;
|
343 |
+
padding: 1.5rem;
|
344 |
+
margin: 1rem 0;
|
345 |
}
|
346 |
|
347 |
+
.answer-text {
|
348 |
+
font-size: 1.125rem;
|
349 |
+
color: #1e293b;
|
350 |
+
line-height: 1.6;
|
351 |
+
margin-bottom: 1rem;
|
352 |
}
|
353 |
|
354 |
+
.answer-highlight {
|
355 |
+
background: #fef3c7;
|
356 |
+
padding: 0.125rem 0.375rem;
|
357 |
+
border-radius: 4px;
|
358 |
+
font-weight: 600;
|
359 |
+
color: #92400e;
|
360 |
}
|
361 |
|
362 |
+
.context-info {
|
363 |
+
background: #f1f5f9;
|
364 |
+
border-left: 4px solid #3b82f6;
|
365 |
+
padding: 0.75rem 1rem;
|
366 |
+
margin: 1rem 0;
|
367 |
+
font-size: 0.875rem;
|
368 |
+
color: #475569;
|
369 |
}
|
370 |
|
371 |
+
/* Hide default menu and footer */
|
372 |
+
#MainMenu {visibility: hidden;}
|
373 |
+
footer {visibility: hidden;}
|
374 |
+
header {visibility: hidden;}
|
375 |
+
|
376 |
+
/* Auto scroll */
|
377 |
+
.main-container {
|
378 |
+
height: 70vh;
|
379 |
+
overflow-y: auto;
|
380 |
}
|
381 |
+
</style>
|
382 |
+
""", unsafe_allow_html=True)
|
383 |
|
384 |
+
# JavaScript for interactions
|
385 |
+
st.markdown("""
|
386 |
+
<script>
|
387 |
+
function scrollToBottom() {
|
388 |
+
setTimeout(function() {
|
389 |
+
const mainContainer = document.querySelector('.main-container');
|
390 |
+
if (mainContainer) {
|
391 |
+
mainContainer.scrollTop = mainContainer.scrollHeight;
|
392 |
+
}
|
393 |
+
window.scrollTo(0, document.body.scrollHeight);
|
394 |
+
}, 100);
|
395 |
}
|
396 |
|
397 |
+
function toggleCode(header) {
|
398 |
+
const codeBlock = header.nextElementSibling;
|
399 |
+
const toggleText = header.querySelector('.toggle-text');
|
400 |
+
|
401 |
+
if (codeBlock.style.display === 'none') {
|
402 |
+
codeBlock.style.display = 'block';
|
403 |
+
toggleText.textContent = 'Click to collapse';
|
404 |
+
} else {
|
405 |
+
codeBlock.style.display = 'none';
|
406 |
+
toggleText.textContent = 'Click to expand';
|
407 |
+
}
|
408 |
+
}
|
409 |
+
</script>
|
410 |
+
""", unsafe_allow_html=True)
|
411 |
+
|
412 |
+
# FORCE reload environment variables
|
413 |
+
load_dotenv(override=True)
|
414 |
+
|
415 |
+
# Get API keys
|
416 |
+
Groq_Token = os.getenv("GROQ_API_KEY")
|
417 |
+
hf_token = os.getenv("HF_TOKEN")
|
418 |
+
gemini_token = os.getenv("GEMINI_TOKEN")
|
419 |
+
|
420 |
+
models = {
|
421 |
+
"gpt-oss-20b": "openai/gpt-oss-20b",
|
422 |
+
"gpt-oss-120b": "openai/gpt-oss-120b",
|
423 |
+
"llama3.1": "llama-3.1-8b-instant",
|
424 |
+
"llama3.3": "llama-3.3-70b-versatile",
|
425 |
+
"deepseek-R1": "deepseek-r1-distill-llama-70b",
|
426 |
+
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
|
427 |
+
"llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct",
|
428 |
+
"gemini-pro": "gemini-1.5-pro"
|
429 |
}
|
430 |
|
431 |
+
self_path = os.path.dirname(os.path.abspath(__file__))
|
432 |
+
|
433 |
+
# Initialize session ID for this session
|
434 |
+
if "session_id" not in st.session_state:
|
435 |
+
st.session_state.session_id = str(uuid.uuid4())
|
436 |
+
|
437 |
+
def upload_feedback(feedback, error, output, last_prompt, code, status):
|
438 |
+
"""Enhanced feedback upload function with better logging and error handling"""
|
439 |
+
try:
|
440 |
+
if not hf_token or hf_token.strip() == "":
|
441 |
+
st.warning("Cannot upload feedback - HF_TOKEN not available")
|
442 |
+
return False
|
443 |
+
|
444 |
+
# Create comprehensive feedback data
|
445 |
+
feedback_data = {
|
446 |
+
"timestamp": datetime.now().isoformat(),
|
447 |
+
"session_id": st.session_state.session_id,
|
448 |
+
"feedback_score": feedback.get("score", ""),
|
449 |
+
"feedback_comment": feedback.get("text", ""),
|
450 |
+
"user_prompt": last_prompt,
|
451 |
+
"ai_output": str(output),
|
452 |
+
"generated_code": code or "",
|
453 |
+
"error_message": error or "",
|
454 |
+
"is_image_output": status.get("is_image", False),
|
455 |
+
"success": not bool(error)
|
456 |
+
}
|
457 |
+
|
458 |
+
# Create unique folder name with timestamp
|
459 |
+
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
460 |
+
random_id = str(uuid.uuid4())[:8]
|
461 |
+
folder_name = f"feedback_{timestamp_str}_{random_id}"
|
462 |
+
|
463 |
+
# Create markdown feedback file
|
464 |
+
markdown_content = f"""# VayuChat Feedback Report
|
465 |
+
|
466 |
+
## Session Information
|
467 |
+
- **Timestamp**: {feedback_data['timestamp']}
|
468 |
+
- **Session ID**: {feedback_data['session_id']}
|
469 |
+
|
470 |
+
## User Interaction
|
471 |
+
**Prompt**: {feedback_data['user_prompt']}
|
472 |
+
|
473 |
+
## AI Response
|
474 |
+
**Output**: {feedback_data['ai_output']}
|
475 |
+
|
476 |
+
## Generated Code
|
477 |
+
```python
|
478 |
+
{feedback_data['generated_code']}
|
479 |
+
```
|
480 |
+
|
481 |
+
## Technical Details
|
482 |
+
- **Error Message**: {feedback_data['error_message']}
|
483 |
+
- **Is Image Output**: {feedback_data['is_image_output']}
|
484 |
+
- **Success**: {feedback_data['success']}
|
485 |
+
|
486 |
+
## User Feedback
|
487 |
+
- **Score**: {feedback_data['feedback_score']}
|
488 |
+
- **Comments**: {feedback_data['feedback_comment']}
|
489 |
+
"""
|
490 |
+
|
491 |
+
# Save markdown file locally
|
492 |
+
markdown_filename = f"{folder_name}.md"
|
493 |
+
markdown_local_path = f"/tmp/{markdown_filename}"
|
494 |
+
|
495 |
+
with open(markdown_local_path, "w", encoding="utf-8") as f:
|
496 |
+
f.write(markdown_content)
|
497 |
+
|
498 |
+
# Upload to Hugging Face
|
499 |
+
api = HfApi(token=hf_token)
|
500 |
+
|
501 |
+
# Upload markdown feedback
|
502 |
+
api.upload_file(
|
503 |
+
path_or_fileobj=markdown_local_path,
|
504 |
+
path_in_repo=f"data/{markdown_filename}",
|
505 |
+
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
|
506 |
+
repo_type="dataset",
|
507 |
+
)
|
508 |
+
|
509 |
+
# Upload image if it exists and is an image output
|
510 |
+
if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
|
511 |
+
try:
|
512 |
+
image_filename = f"{folder_name}_plot.png"
|
513 |
+
api.upload_file(
|
514 |
+
path_or_fileobj=output,
|
515 |
+
path_in_repo=f"data/{image_filename}",
|
516 |
+
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
|
517 |
+
repo_type="dataset",
|
518 |
+
)
|
519 |
+
except Exception as img_error:
|
520 |
+
print(f"Error uploading image: {img_error}")
|
521 |
+
|
522 |
+
# Clean up local files
|
523 |
+
if os.path.exists(markdown_local_path):
|
524 |
+
os.remove(markdown_local_path)
|
525 |
+
|
526 |
+
st.success("Feedback uploaded successfully!")
|
527 |
+
return True
|
528 |
+
|
529 |
+
except Exception as e:
|
530 |
+
st.error(f"Error uploading feedback: {e}")
|
531 |
+
print(f"Feedback upload error: {e}")
|
532 |
+
return False
|
533 |
+
|
534 |
+
# Filter available models
|
535 |
+
available_models = []
|
536 |
+
model_names = list(models.keys())
|
537 |
+
groq_models = []
|
538 |
+
gemini_models = []
|
539 |
+
for model_name in model_names:
|
540 |
+
if "gemini" not in model_name:
|
541 |
+
groq_models.append(model_name)
|
542 |
+
else:
|
543 |
+
gemini_models.append(model_name)
|
544 |
+
if Groq_Token and Groq_Token.strip():
|
545 |
+
available_models.extend(groq_models)
|
546 |
+
if gemini_token and gemini_token.strip():
|
547 |
+
available_models.extend(gemini_models)
|
548 |
+
|
549 |
+
if not available_models:
|
550 |
+
st.error("No API keys available! Please set up your API keys in the .env file")
|
551 |
+
st.stop()
|
552 |
+
|
553 |
+
# Set DeepSeek-R1 as default if available
|
554 |
+
default_index = 0
|
555 |
+
if "deepseek-R1" in available_models:
|
556 |
+
default_index = available_models.index("deepseek-R1")
|
557 |
|
558 |
+
# Simple header - just title and model selector
|
559 |
+
col1, col2 = st.columns([3, 1])
|
560 |
+
with col1:
|
561 |
+
st.title("VayuChat")
|
562 |
+
with col2:
|
563 |
+
model_name = st.selectbox(
|
564 |
+
"Model:",
|
565 |
+
available_models,
|
566 |
+
index=default_index,
|
567 |
+
help="Choose your AI model"
|
568 |
+
)
|
569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
|
571 |
+
# Load data with caching for better performance
|
572 |
+
@st.cache_data
|
573 |
+
def load_data():
|
574 |
+
return preprocess_and_load_df(join(self_path, "Data.csv"))
|
575 |
|
576 |
+
try:
|
577 |
+
df = load_data()
|
578 |
+
# Data loaded silently - no success message needed
|
579 |
+
except Exception as e:
|
580 |
+
st.error(f"Error loading data: {e}")
|
581 |
+
st.stop()
|
|
|
|
|
582 |
|
583 |
+
inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
584 |
+
image_path = "IITGN_Logo.png"
|
|
|
|
|
|
|
585 |
|
586 |
+
# Clean sidebar
|
587 |
+
with st.sidebar:
|
588 |
+
# Quick Queries Section - moved to top
|
589 |
+
st.markdown("### Quick Queries")
|
590 |
+
|
591 |
+
# Load quick prompts with caching
|
592 |
+
@st.cache_data
|
593 |
+
def load_questions():
|
594 |
+
questions = []
|
595 |
+
questions_file = join(self_path, "questions.txt")
|
596 |
+
if os.path.exists(questions_file):
|
597 |
+
try:
|
598 |
+
with open(questions_file, 'r', encoding='utf-8') as f:
|
599 |
+
content = f.read()
|
600 |
+
questions = [q.strip() for q in content.split("\n") if q.strip()]
|
601 |
+
except Exception as e:
|
602 |
+
questions = []
|
603 |
+
return questions
|
604 |
+
|
605 |
+
questions = load_questions()
|
606 |
+
|
607 |
+
# Add default prompts if file doesn't exist or is empty
|
608 |
+
if not questions:
|
609 |
+
questions = [
|
610 |
+
"Which month had highest pollution?",
|
611 |
+
"Which city has worst air quality?",
|
612 |
+
"Show annual PM2.5 average",
|
613 |
+
"Plot monthly average PM2.5 for 2023",
|
614 |
+
"List all cities by pollution level",
|
615 |
+
"Compare winter vs summer pollution",
|
616 |
+
"Show seasonal pollution patterns",
|
617 |
+
"Which areas exceed WHO guidelines?",
|
618 |
+
"What are peak pollution hours?",
|
619 |
+
"Show PM10 vs PM2.5 comparison",
|
620 |
+
"Which station records highest variability in PM2.5?",
|
621 |
+
"Calculate pollution improvement rate year-over-year by city",
|
622 |
+
"Identify cities with PM2.5 levels consistently above 50 μg/m³ for >6 months",
|
623 |
+
"Find correlation between PM2.5 and PM10 across different seasons and cities",
|
624 |
+
"Compare weekday vs weekend levels",
|
625 |
+
"Plot yearly trend analysis",
|
626 |
+
"Show pollution distribution by city",
|
627 |
+
"Create correlation plot between pollutants"
|
628 |
+
]
|
629 |
+
|
630 |
+
# Quick query buttons in sidebar
|
631 |
+
selected_prompt = None
|
632 |
+
|
633 |
+
|
634 |
+
for i, question in enumerate(questions[:20]): # Show more questions including policy-focused ones
|
635 |
+
# Simple left-aligned buttons without icons for cleaner look
|
636 |
+
if st.button(question, key=f"sidebar_prompt_{i}", use_container_width=True, help=f"Click to analyze: {question}"):
|
637 |
+
if question != st.session_state.get("last_selected_prompt"):
|
638 |
+
selected_prompt = question
|
639 |
+
st.session_state.last_selected_prompt = question
|
640 |
+
|
641 |
+
st.markdown("---")
|
642 |
+
|
643 |
+
|
644 |
+
# Clear Chat Button
|
645 |
+
if st.button("Clear Chat", use_container_width=True):
|
646 |
+
st.session_state.responses = []
|
647 |
+
st.session_state.processing = False
|
648 |
+
st.session_state.session_id = str(uuid.uuid4())
|
649 |
+
try:
|
650 |
+
st.rerun()
|
651 |
+
except AttributeError:
|
652 |
+
st.experimental_rerun()
|
653 |
|
654 |
+
# Initialize session state first
|
655 |
+
if "responses" not in st.session_state:
|
656 |
+
st.session_state.responses = []
|
657 |
+
if "processing" not in st.session_state:
|
658 |
+
st.session_state.processing = False
|
659 |
+
if "session_id" not in st.session_state:
|
660 |
+
st.session_state.session_id = str(uuid.uuid4())
|
661 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
|
|
|
|
|
|
|
|
|
|
|
663 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
|
665 |
+
def show_custom_response(response):
|
666 |
+
"""Custom response display function with improved styling"""
|
667 |
+
role = response.get("role", "assistant")
|
668 |
+
content = response.get("content", "")
|
669 |
+
|
670 |
+
if role == "user":
|
671 |
+
# User message with right alignment - reduced margins
|
672 |
+
st.markdown(f"""
|
673 |
+
<div style='display: flex; justify-content: flex-end; margin: 1rem 0;'>
|
674 |
+
<div class='user-message'>
|
675 |
+
{content}
|
676 |
+
</div>
|
677 |
+
</div>
|
678 |
+
""", unsafe_allow_html=True)
|
679 |
+
elif role == "assistant":
|
680 |
+
# Check if content is an image filename - don't display the filename text
|
681 |
+
is_image_path = isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg', '.jpeg'])
|
682 |
+
|
683 |
+
# Check if content is a pandas DataFrame
|
684 |
+
import pandas as pd
|
685 |
+
is_dataframe = isinstance(content, pd.DataFrame)
|
686 |
+
|
687 |
+
# Check for errors first and display them with special styling
|
688 |
+
error = response.get("error")
|
689 |
+
timestamp = response.get("timestamp", "")
|
690 |
+
timestamp_display = f" • {timestamp}" if timestamp else ""
|
691 |
+
|
692 |
+
if error:
|
693 |
+
st.markdown(f"""
|
694 |
+
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
695 |
+
<div class='assistant-message'>
|
696 |
+
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
697 |
+
<div class='error-message'>
|
698 |
+
⚠️ <strong>Error:</strong> {error}
|
699 |
+
<br><br>
|
700 |
+
<em>💡 Try rephrasing your question or being more specific about what you'd like to analyze.</em>
|
701 |
+
</div>
|
702 |
+
</div>
|
703 |
+
</div>
|
704 |
+
""", unsafe_allow_html=True)
|
705 |
+
# Assistant message with left alignment - reduced margins
|
706 |
+
elif not is_image_path and not is_dataframe:
|
707 |
+
st.markdown(f"""
|
708 |
+
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
709 |
+
<div class='assistant-message'>
|
710 |
+
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
711 |
+
{content if isinstance(content, str) else str(content)}
|
712 |
+
</div>
|
713 |
+
</div>
|
714 |
+
""", unsafe_allow_html=True)
|
715 |
+
elif is_dataframe:
|
716 |
+
# Display DataFrame with nice formatting
|
717 |
+
st.markdown(f"""
|
718 |
+
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
719 |
+
<div class='assistant-message'>
|
720 |
+
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
721 |
+
Here are the results:
|
722 |
+
</div>
|
723 |
+
</div>
|
724 |
+
""", unsafe_allow_html=True)
|
725 |
+
|
726 |
+
# Add context info for dataframes
|
727 |
+
st.markdown("""
|
728 |
+
<div class='context-info'>
|
729 |
+
💡 This table is interactive - click column headers to sort, or scroll to view all data.
|
730 |
+
</div>
|
731 |
+
""", unsafe_allow_html=True)
|
732 |
+
|
733 |
+
st.dataframe(content, use_container_width=True)
|
734 |
+
|
735 |
+
# Show generated code with Streamlit expander
|
736 |
+
if response.get("gen_code"):
|
737 |
+
with st.expander("📋 View Generated Code", expanded=False):
|
738 |
+
st.code(response["gen_code"], language="python")
|
739 |
+
|
740 |
+
# Try to display image if content is a file path
|
741 |
+
try:
|
742 |
+
if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
|
743 |
+
if os.path.exists(content):
|
744 |
+
# Display image without showing filename
|
745 |
+
st.image(content, use_column_width=True)
|
746 |
+
return {"is_image": True}
|
747 |
+
# Also handle case where content shows filename but we want to show image
|
748 |
+
elif isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg']):
|
749 |
+
# Extract potential filename from content
|
750 |
+
import re
|
751 |
+
filename_match = re.search(r'([^/\\]+\.(?:png|jpg|jpeg))', content)
|
752 |
+
if filename_match:
|
753 |
+
filename = filename_match.group(1)
|
754 |
+
if os.path.exists(filename):
|
755 |
+
st.image(filename, use_column_width=True)
|
756 |
+
return {"is_image": True}
|
757 |
+
except:
|
758 |
+
pass
|
759 |
+
|
760 |
+
return {"is_image": False}
|
761 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
762 |
|
763 |
+
# Chat history
|
764 |
+
# Display chat history
|
765 |
+
for response_id, response in enumerate(st.session_state.responses):
|
766 |
+
status = show_custom_response(response)
|
767 |
+
|
768 |
+
# Show feedback section for assistant responses
|
769 |
+
if response["role"] == "assistant":
|
770 |
+
feedback_key = f"feedback_{int(response_id/2)}"
|
771 |
+
error = response.get("error", "")
|
772 |
+
output = response.get("content", "")
|
773 |
+
last_prompt = response.get("last_prompt", "")
|
774 |
+
code = response.get("gen_code", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
775 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
|
777 |
+
if "feedback" in st.session_state.responses[response_id]:
|
778 |
+
feedback_data = st.session_state.responses[response_id]["feedback"]
|
779 |
+
st.markdown(f"""
|
780 |
+
<div class='feedback-section'>
|
781 |
+
<strong>Your Feedback:</strong> {feedback_data.get('score', '')}
|
782 |
+
{f"- {feedback_data.get('text', '')}" if feedback_data.get('text') else ""}
|
783 |
+
</div>
|
784 |
+
""", unsafe_allow_html=True)
|
785 |
+
else:
|
786 |
+
# Simple feedback
|
787 |
+
st.markdown("**Rate this response:**")
|
788 |
+
col1, col2 = st.columns(2)
|
789 |
+
with col1:
|
790 |
+
good = st.button("👍 Good", key=f"{feedback_key}_good")
|
791 |
+
with col2:
|
792 |
+
poor = st.button("👎 Needs work", key=f"{feedback_key}_poor")
|
793 |
+
|
794 |
+
if good or poor:
|
795 |
+
if good:
|
796 |
+
thumbs = "👍 Good"
|
797 |
+
else:
|
798 |
+
thumbs = "👎 Needs work"
|
799 |
+
comments = st.text_input("Optional comment:", key=f"{feedback_key}_comments")
|
800 |
+
|
801 |
+
feedback = {"score": thumbs, "text": comments}
|
802 |
+
st.session_state.responses[response_id]["feedback"] = feedback
|
803 |
+
st.success("Thanks for your feedback!")
|
804 |
+
st.rerun()
|
805 |
|
806 |
+
# Chat input with better guidance
|
807 |
+
prompt = st.chat_input("💬 Ask about air quality trends, compare cities, or request visualizations...", key="main_chat")
|
|
|
|
|
808 |
|
809 |
+
# Handle selected prompt from quick prompts
|
810 |
+
if selected_prompt:
|
811 |
+
prompt = selected_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
812 |
|
813 |
+
# Handle follow-up prompts from quick action buttons
|
814 |
+
if st.session_state.get("follow_up_prompt") and not st.session_state.get("processing"):
|
815 |
+
prompt = st.session_state.follow_up_prompt
|
816 |
+
st.session_state.follow_up_prompt = None # Clear the follow-up prompt
|
817 |
|
818 |
+
# Handle new queries
|
819 |
+
if prompt and not st.session_state.get("processing"):
|
820 |
+
# Prevent duplicate processing
|
821 |
+
if "last_prompt" in st.session_state:
|
822 |
+
last_prompt = st.session_state["last_prompt"]
|
823 |
+
last_model_name = st.session_state.get("last_model_name", "")
|
824 |
+
if (prompt == last_prompt) and (model_name == last_model_name):
|
825 |
+
prompt = None
|
826 |
|
827 |
+
if prompt:
|
828 |
+
# Add user input to chat history
|
829 |
+
user_response = get_from_user(prompt)
|
830 |
+
st.session_state.responses.append(user_response)
|
831 |
+
|
832 |
+
# Set processing state
|
833 |
+
st.session_state.processing = True
|
834 |
+
st.session_state.current_model = model_name
|
835 |
+
st.session_state.current_question = prompt
|
836 |
+
|
837 |
+
# Rerun to show processing indicator
|
838 |
+
st.rerun()
|
839 |
|
840 |
+
# Process the question if we're in processing state
|
841 |
+
if st.session_state.get("processing"):
|
842 |
+
# Enhanced processing indicator like Claude Code
|
843 |
+
st.markdown("""
|
844 |
+
<div style='padding: 1rem; text-align: center; background: #f8fafc; border-radius: 8px; margin: 1rem 0;'>
|
845 |
+
<div style='display: flex; align-items: center; justify-content: center; gap: 0.5rem; color: #475569;'>
|
846 |
+
<div style='font-weight: 500;'>🤖 Processing with """ + str(st.session_state.get('current_model', 'Unknown')) + """</div>
|
847 |
+
<div class='dots' style='display: inline-flex; gap: 2px;'>
|
848 |
+
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out;'></div>
|
849 |
+
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.16s;'></div>
|
850 |
+
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.32s;'></div>
|
851 |
+
</div>
|
852 |
+
</div>
|
853 |
+
<div style='font-size: 0.75rem; color: #6b7280; margin-top: 0.25rem;'>Analyzing data and generating response...</div>
|
854 |
+
</div>
|
855 |
+
<style>
|
856 |
+
@keyframes bounce {
|
857 |
+
0%, 80%, 100% { transform: scale(0.8); opacity: 0.5; }
|
858 |
+
40% { transform: scale(1.2); opacity: 1; }
|
859 |
}
|
860 |
+
</style>
|
861 |
+
""", unsafe_allow_html=True)
|
862 |
+
|
863 |
+
prompt = st.session_state.get("current_question")
|
864 |
+
model_name = st.session_state.get("current_model")
|
865 |
+
|
866 |
+
try:
|
867 |
+
response = ask_question(model_name=model_name, question=prompt)
|
868 |
+
|
869 |
+
if not isinstance(response, dict):
|
870 |
+
response = {
|
871 |
+
"role": "assistant",
|
872 |
+
"content": "Error: Invalid response format",
|
873 |
+
"gen_code": "",
|
874 |
+
"ex_code": "",
|
875 |
+
"last_prompt": prompt,
|
876 |
+
"error": "Invalid response format",
|
877 |
+
"timestamp": datetime.now().strftime("%H:%M")
|
878 |
+
}
|
879 |
+
|
880 |
+
response.setdefault("role", "assistant")
|
881 |
+
response.setdefault("content", "No content generated")
|
882 |
+
response.setdefault("gen_code", "")
|
883 |
+
response.setdefault("ex_code", "")
|
884 |
+
response.setdefault("last_prompt", prompt)
|
885 |
+
response.setdefault("error", None)
|
886 |
+
response.setdefault("timestamp", datetime.now().strftime("%H:%M"))
|
887 |
+
|
888 |
+
except Exception as e:
|
889 |
+
response = {
|
890 |
+
"role": "assistant",
|
891 |
+
"content": f"Sorry, I encountered an error: {str(e)}",
|
892 |
+
"gen_code": "",
|
893 |
+
"ex_code": "",
|
894 |
+
"last_prompt": prompt,
|
895 |
+
"error": str(e),
|
896 |
+
"timestamp": datetime.now().strftime("%H:%M")
|
897 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
|
899 |
+
st.session_state.responses.append(response)
|
900 |
+
st.session_state["last_prompt"] = prompt
|
901 |
+
st.session_state["last_model_name"] = model_name
|
902 |
+
st.session_state.processing = False
|
903 |
+
|
904 |
+
# Clear processing state
|
905 |
+
if "current_model" in st.session_state:
|
906 |
+
del st.session_state.current_model
|
907 |
+
if "current_question" in st.session_state:
|
908 |
+
del st.session_state.current_question
|
909 |
+
|
910 |
+
st.rerun()
|
911 |
|
912 |
+
# Close chat container
|
913 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
914 |
|
915 |
+
# Minimal auto-scroll - only scroll when processing
|
916 |
+
if st.session_state.get("processing"):
|
917 |
+
st.markdown("<script>scrollToBottom();</script>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
918 |
|
919 |
+
# Beautiful sidebar footer
|
920 |
+
# with st.sidebar:
|
921 |
+
# st.markdown("---")
|
922 |
+
# st.markdown("""
|
923 |
+
# <div class='contact-section'>
|
924 |
+
# <h4>📄 Paper on VayuChat</h4>
|
925 |
+
# <p>Learn more about VayuChat in our <a href='https://arxiv.org/abs/2411.12760' target='_blank'>Research Paper</a>.</p>
|
926 |
+
# </div>
|
927 |
+
# """, unsafe_allow_html=True)
|
928 |
+
|
929 |
+
# Dataset Info Section (matching mockup)
|
930 |
+
st.markdown("### Dataset Info")
|
931 |
+
st.markdown("""
|
932 |
+
<div style='background: #f1f5f9; border-radius: 8px; padding: 1rem; margin-bottom: 1rem;'>
|
933 |
+
<h4 style='margin: 0 0 0.5rem 0; color: #1e293b; font-size: 0.9rem;'>PM2.5 Air Quality Data</h4>
|
934 |
+
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Time Range:</strong> 2022 - 2023</p>
|
935 |
+
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Locations:</strong> 300+ cities across India</p>
|
936 |
+
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Records:</strong> 100,000+ measurements</p>
|
937 |
+
</div>
|
938 |
+
""", unsafe_allow_html=True)
|
939 |
|
|
|
|
|
|
|
|
|
940 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ncap_funding_data.csv
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
S. No.,state,city,Amount released during FY 2019-20,Amount released during FY 2020-21,Amount released during FY 2021-22,Total fund released,Utilisation as on June 2022
|
2 |
-
1,Andhra Pradesh,Vijaywada,6.0,,,6.0,22.91
|
3 |
-
2,Andhra Pradesh,Guntur,0.12,0.76,1.96,2.84,22.91
|
4 |
-
3,Andhra Pradesh,Kurnool,0.06,0.76,1.36,2.18,22.91
|
5 |
-
4,Andhra Pradesh,Nellore,0.06,0.76,1.92,2.74,22.91
|
6 |
-
5,Andhra Pradesh,Visakhapatnam,0.12,,,0.12,22.91
|
7 |
-
6,Andhra Pradesh,Srikakulam,,2.0,0.49,2.49,22.91
|
8 |
-
7,Andhra Pradesh,Chitoor,,2.0,0.46,2.46,22.91
|
9 |
-
8,Andhra Pradesh,Ongole,,2.0,0.64,2.64,22.91
|
10 |
-
9,Andhra Pradesh,vizianagaram,,2.0,0.83,2.83,22.91
|
11 |
-
10,Andhra Pradesh,Eluru,,2.0,0.82,2.82,22.91
|
12 |
-
11,Andhra Pradesh,Rajahmundry,,2.0,1.13,3.13,22.91
|
13 |
-
12,Andhra Pradesh,Anantapur,,2.0,1.04,3.04,22.91
|
14 |
-
13,Andhra Pradesh,Kadapa,,1.0,0.83,1.83,22.91
|
15 |
-
14,Assam,Guwahati,0.12,5.0,,5.12,1.45
|
16 |
-
15,Assam,Nagaon,0.06,2.0,,2.06,1.45
|
17 |
-
16,Assam,Nalbari,0.06,1.0,,1.06,1.45
|
18 |
-
17,Assam,Sibsagar,0.06,2.0,,2.06,1.45
|
19 |
-
18,Assam,Silchar,0.06,2.0,,2.06,1.45
|
20 |
-
19,Bihar,Patna,10.0,,,10.0,15.2
|
21 |
-
20,Bihar,Gaya,0.1,2.0,1.9,4.0,15.2
|
22 |
-
21,Bihar,Muzaffarpur,0.1,5.0,2.5,7.6,15.2
|
23 |
-
22,Chandigarh,Chandigarh,8.28,5.0,4.61,17.89,10.83
|
24 |
-
23,Chhattisgarh,Raipur,6.0,,,6.0,2.76
|
25 |
-
24,Chhattisgarh,Durg Bhilainagar,6.0,,,6.0,2.76
|
26 |
-
25,Chhattisgarh,Korba,0.06,1.0,,1.06,2.76
|
27 |
-
26,Delhi,Delhi,,,11.25,11.25,
|
28 |
-
27,Gujarat,Surat,6.0,,,6.0,12.0
|
29 |
-
28,Gujarat,Ahmedabad,6.0,,,6.0,12.0
|
30 |
-
29,Himachal Pradesh,Baddi (Baddi&nalagarh considered twin during FY 20-21),0.06,3.0,0.2,3.26,6.35
|
31 |
-
30,Himachal Pradesh,Nalagarh,0.06,,0.06,0.12,6.35
|
32 |
-
31,Himachal Pradesh,Paonta Sahib,0.06,1.0,0.1,1.16,6.35
|
33 |
-
32,Himachal Pradesh,Sunder Nagar,0.06,1.0,0.08,1.14,6.35
|
34 |
-
33,Himachal Pradesh,Kala Amb,,3.0,0.0,3.0,6.35
|
35 |
-
34,Himachal Pradesh,Damtal,,1.0,0.01,1.01,6.35
|
36 |
-
35,Himachal Pradesh,Parwanoo,,1.0,0.03,1.03,6.35
|
37 |
-
36,Jammu & Kashmir,Jammu,0.12,3.0,4.89,8.01,0.12
|
38 |
-
37,Jammu & Kashmir,Srinagar,,5.0,7.95,12.95,0.12
|
39 |
-
38,Jharkhand,Dhanbad,6.0,,,6.0,3.0
|
40 |
-
39,Karnataka,Bangalore,6.0,,,6.0,7.39
|
41 |
-
40,Karnataka,Gulburga,0.12,0.38,2.24,2.74,7.39
|
42 |
-
41,Karnataka,Hubli-Dharwad,0.12,0.38,3.68,4.18,7.39
|
43 |
-
42,Karnataka,Devangere,0.06,0.76,1.4,2.22,7.39
|
44 |
-
43,Madhya Pradesh,Bhopal,10.0,,,10.0,20.96
|
45 |
-
44,Madhya Pradesh,Gwalior,10.0,,,10.0,20.96
|
46 |
-
45,Madhya Pradesh,Indore,0.2,,,0.2,20.96
|
47 |
-
46,Madhya Pradesh,Ujjain,0.2,0.38,2.33,2.91,20.96
|
48 |
-
47,Madhya Pradesh,Sagar,0.1,0.76,1.36,2.22,20.96
|
49 |
-
48,Madhya Pradesh,Dewas,0.1,0.38,1.33,1.81,20.96
|
50 |
-
49,Maharashtra,Mumbai,9.5,,,9.5,29.92
|
51 |
-
50,Maharashtra,Nagpur,9.45,,,9.45,29.92
|
52 |
-
51,Maharashtra,Navi Mumbai,9.45,,,9.45,29.92
|
53 |
-
52,Maharashtra,Pune,9.45,,,9.45,29.92
|
54 |
-
53,Maharashtra,Amravati,0.2,1.14,2.91,4.25,29.92
|
55 |
-
54,Maharashtra,Aurangabad,0.2,,,0.2,29.92
|
56 |
-
55,Maharashtra,Nashik,0.2,,,0.2,29.92
|
57 |
-
56,Maharashtra,Kolhapur,0.2,0.76,,0.96,29.92
|
58 |
-
57,Maharashtra,Sangli,0.2,0.76,1.72,2.68,29.92
|
59 |
-
58,Maharashtra,Solapur,0.2,0.38,4.2,4.78,29.92
|
60 |
-
59,Maharashtra,Ulhasnagar,0.2,1.9,,2.1,29.92
|
61 |
-
60,Maharashtra,Akola,0.1,1.14,1.47,2.71,29.92
|
62 |
-
61,Maharashtra,Badlapur,0.1,1.9,,2.0,29.92
|
63 |
-
62,Maharashtra,Chandrapur,0.1,1.14,,1.24,29.92
|
64 |
-
63,Maharashtra,Jalgaon,0.1,0.76,,0.86,29.92
|
65 |
-
64,Maharashtra,Jalna,0.1,1.14,,1.24,29.92
|
66 |
-
65,Maharashtra,Latur,0.1,0.38,1.6,2.08,29.92
|
67 |
-
66,Meghalaya,Byrnihat,,3.0,0.0,3.0,1.97
|
68 |
-
67,Nagaland,Dimapur,0.06,3.0,0.53,3.59,6.12
|
69 |
-
68,Nagaland,Kohima,0.06,3.0,0.4,3.46,6.12
|
70 |
-
69,Odisha,Twin City Bhubaneshwar & Cuttack,6.0,,,6.0,3.62
|
71 |
-
70,Odisha,Balasore,0.06,0.76,,0.82,3.62
|
72 |
-
71,Odisha,Rourkela,0.06,1.14,,1.2,3.62
|
73 |
-
72,Odisha,Angul,0.06,1.14,,1.2,3.62
|
74 |
-
73,Odisha,Kalinga Nagar,,3.0,,3.0,3.62
|
75 |
-
74,Odisha,Talcher,,,0.22,0.22,3.62
|
76 |
-
75,Odisha,Cuttack,,,3.42,3.42,3.62
|
77 |
-
76,Punjab,Ludhiana,6.0,,,6.0,3.02
|
78 |
-
77,Punjab,Amritsar,6.0,,,6.0,3.02
|
79 |
-
78,Punjab,Jalandhar,0.12,4.0,,4.12,3.02
|
80 |
-
79,Punjab,Khanna,0.06,1.9,,1.96,3.02
|
81 |
-
80,Punjab,Gobindgarh,0.06,3.0,,3.06,3.02
|
82 |
-
81,Punjab,NayaNangal,0.06,1.0,,1.06,3.02
|
83 |
-
82,Punjab,Dera Baba Nanak,0.06,0.76,,0.82,3.02
|
84 |
-
83,Punjab,Patiala,0.06,4.0,,4.06,3.02
|
85 |
-
84,Punjab,DeraBassi,0.06,0.38,,0.44,3.02
|
86 |
-
85,Rajasthan,Jaipur,6.0,,,6.0,12.55
|
87 |
-
86,Rajasthan,Jodhpur,6.0,,,6.0,12.55
|
88 |
-
87,Rajasthan,Kota,6.0,,,6.0,12.55
|
89 |
-
88,Rajasthan,Alwar,0.06,1.9,,1.96,12.55
|
90 |
-
89,Rajasthan,Udaipur,0.06,1.9,,1.96,12.55
|
91 |
-
90,Tamil Nadu,Tuticorin,0.06,3.0,,3.06,
|
92 |
-
91,Telangana,Hyderabad,10.8,,,10.8,9.72
|
93 |
-
92,Telangana,Nalgonda,0.1,0.38,0.47,0.95,9.72
|
94 |
-
93,Telangana,Patencheru,0.1,0.38,,0.48,9.72
|
95 |
-
94,Telangana,Sangareddy,,2.0,0.32,2.32,9.72
|
96 |
-
95,Uttar Pradesh,Agra,9.45,,,9.45,30.57
|
97 |
-
96,Uttar Pradesh,Allahabad,9.45,,,9.45,30.57
|
98 |
-
97,Uttar Pradesh,Kanpur,9.45,,,9.45,30.57
|
99 |
-
98,Uttar Pradesh,Lucknow,9.45,,,9.45,30.57
|
100 |
-
99,Uttar Pradesh,Varanasi,9.47,,,9.47,30.57
|
101 |
-
100,Uttar Pradesh,Moradabad,0.2,1.9,,2.1,30.57
|
102 |
-
101,Uttar Pradesh,Bareily,0.2,1.9,,2.1,30.57
|
103 |
-
102,Uttar Pradesh,Firozabad,0.2,1.9,,2.1,30.57
|
104 |
-
103,Uttar Pradesh,Jhansi,0.2,1.14,,1.34,30.57
|
105 |
-
104,Uttar Pradesh,Khurja,0.1,1.9,,2.0,30.57
|
106 |
-
105,Uttar Pradesh,Anpara,0.1,1.14,,1.24,30.57
|
107 |
-
106,Uttar Pradesh,Gajraula,0.1,1.14,,1.24,30.57
|
108 |
-
107,Uttar Pradesh,Raebareli,0.1,1.14,,1.24,30.57
|
109 |
-
108,Uttar Pradesh,Gorakhpur,,,9.64,9.64,30.57
|
110 |
-
109,Uttar Pradesh,Noida,,,6.67,6.67,30.57
|
111 |
-
110,Uttarakhand,Kashipur,0.06,3.0,0.79,3.85,8.15
|
112 |
-
111,Uttarakhand,Rishikesh,0.06,5.0,,5.06,8.15
|
113 |
-
112,Uttarakhand,Dehradun,,3.0,4.88,7.88,8.15
|
114 |
-
113,West Bengal,Kolkata,6.0,,,6.0,19.0
|
115 |
-
114,West Bengal,Howrah,,5.0,,5.0,19.0
|
116 |
-
115,West Bengal,Haldia,,3.0,,3.0,19.0
|
117 |
-
116,West Bengal,Durgapur,,3.0,,3.0,19.0
|
118 |
-
117,West Bengal,Barrackpore,,2.0,,2.0,19.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_system_prompt.txt
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
Generate Python code to answer the user's question about air quality data.
|
2 |
-
|
3 |
-
SCOPE VALIDATION (MANDATORY FIRST STEP):
|
4 |
-
- ONLY answer questions about: air quality, pollution (PM2.5, PM10, NO2, ozone, etc.), meteorology (wind, temperature, humidity), NCAP funding, Indian cities/states environmental data
|
5 |
-
- If question is NOT about air quality/pollution/environmental data, generate ONLY this code:
|
6 |
-
answer = "I can only help with air quality and pollution data analysis. Please ask about PM2.5, pollution trends, city comparisons, meteorological factors, or NCAP funding."
|
7 |
-
- Examples of REJECTED topics: general Python coding, politics, personal questions, unrelated data analysis
|
8 |
-
- For rejected questions: write only the answer assignment - no other code needed
|
9 |
-
|
10 |
-
CRITICAL: Only generate Python code - no explanations, no thinking, just clean executable code.
|
11 |
-
|
12 |
-
OUTPUT TYPES (store result in 'answer' variable):
|
13 |
-
1. PLOTS: For visualization questions → save plot and store filename: answer = filename
|
14 |
-
2. TEXT: For simple questions → store direct string: answer = "The highest PM2.5 city is Delhi"
|
15 |
-
3. DATAFRAMES: For rankings/lists → store DataFrame: answer = result_df
|
16 |
-
|
17 |
-
AVAILABLE LIBRARIES:
|
18 |
-
- pandas, numpy (data manipulation)
|
19 |
-
- matplotlib, seaborn, plotly (visualization)
|
20 |
-
- statsmodels, scikit-learn (analysis)
|
21 |
-
- geopandas (geospatial analysis)
|
22 |
-
|
23 |
-
IMPORT REQUIREMENTS:
|
24 |
-
- Always import what you use: import seaborn as sns, import numpy as np
|
25 |
-
- Standard imports are already available: pandas as pd, matplotlib.pyplot as plt
|
26 |
-
|
27 |
-
ESSENTIAL RULES:
|
28 |
-
|
29 |
-
DATA SAFETY:
|
30 |
-
- Always check if data exists: if df.empty: answer = "No data available"
|
31 |
-
- For city-specific questions: filter first: df_city = df[df['City'].str.contains('CityName', case=False)]
|
32 |
-
- Check sufficient data: if len(df_filtered) < 10: answer = "Insufficient data"
|
33 |
-
- Use .dropna() to remove missing values before analysis
|
34 |
-
|
35 |
-
PLOTTING REQUIREMENTS:
|
36 |
-
- Create plots for visualization requests: fig, ax = plt.subplots(figsize=(9, 6))
|
37 |
-
- Save plots with ULTRA high resolution: filename = f"plot_{uuid.uuid4().hex[:8]}.png"; plt.savefig(filename, dpi=1200, bbox_inches='tight', facecolor='white', edgecolor='none')
|
38 |
-
- Close plots: plt.close()
|
39 |
-
- Store filename: answer = filename
|
40 |
-
- For non-plots: answer = "text result"
|
41 |
-
|
42 |
-
BASIC ERROR PREVENTION:
|
43 |
-
- Use try/except for complex operations
|
44 |
-
- Validate results: if pd.isna(result): answer = "Analysis inconclusive"
|
45 |
-
- For correlations: check len(data) > 20 before calculating
|
46 |
-
- Use simple matplotlib plotting - avoid complex visualizations
|
47 |
-
|
48 |
-
PLOTTING BEST PRACTICES:
|
49 |
-
- Check data exists in each category before plotting
|
50 |
-
- For comparisons (>, <): ensure both categories have data
|
51 |
-
- Example: high_wind = df[df['WS'] > 3]; low_wind = df[df['WS'] <= 3]
|
52 |
-
- If category is empty: create simple bar chart instead of box plots
|
53 |
-
- Add data count labels: plt.text() to show sample sizes
|
54 |
-
|
55 |
-
TECHNICAL REQUIREMENTS:
|
56 |
-
- Save final result in variable called 'answer'
|
57 |
-
- Use exact column names: 'PM2.5 (µg/m³)', 'WS (m/s)', etc.
|
58 |
-
- Handle dates with pd.to_datetime() if needed
|
59 |
-
- Round numerical results: round(value, 2)
|
60 |
-
|
61 |
-
MANDATORY: ALWAYS END CODE WITH ANSWER ASSIGNMENT
|
62 |
-
- Every code block MUST end with: answer = [result]
|
63 |
-
- If analysis fails: answer = "Unable to complete analysis with available data"
|
64 |
-
- If plotting fails: answer = "Unable to generate visualization"
|
65 |
-
- NEVER leave answer variable unset - this will cause system failure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
questions.txt
CHANGED
@@ -1,30 +1,28 @@
|
|
1 |
-
Which
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
Show seasonal
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
Show
|
27 |
-
|
28 |
-
|
29 |
-
Show seasonal variation in PM2.5 across different climate zones
|
30 |
-
Identify cities with consistent pollution improvement over time
|
|
|
1 |
+
Which month in 2023 had the highest average PM2.5 pollution levels?
|
2 |
+
Which city has the worst air quality based on average PM2.5 levels?
|
3 |
+
Calculate the overall annual average PM2.5 concentration across all cities in 2023
|
4 |
+
Plot monthly average PM2.5 trends for 2023 across all cities
|
5 |
+
Rank all cities by average PM2.5 levels from highest to lowest pollution
|
6 |
+
Compare average PM2.5 levels: winter months (Dec-Feb) vs summer months (Apr-Jun)
|
7 |
+
Show seasonal PM2.5 patterns: which season has highest pollution levels?
|
8 |
+
Which cities have annual average PM2.5 exceeding WHO guideline of 15 μg/m³?
|
9 |
+
Identify the top 10 most polluted cities based on PM2.5 in 2023
|
10 |
+
Compare PM10 vs PM2.5 correlation strength across different cities
|
11 |
+
Which station in Ahmedabad shows highest PM2.5 variability in winter 2023?
|
12 |
+
Calculate PM2.5 improvement rate from 2022 to 2023 for Mumbai vs Delhi
|
13 |
+
Identify Gujarat cities with PM2.5 >50 μg/m³ for 6+ consecutive months in 2023
|
14 |
+
Compare PM2.5 vs PM10 correlation: winter vs summer across top 5 polluted cities
|
15 |
+
Compare average pollution levels: weekdays (Mon-Fri) vs weekends (Sat-Sun)
|
16 |
+
Plot year-over-year PM2.5 trend from 2022 to 2023 for major cities
|
17 |
+
Show PM2.5 distribution histogram across all cities and time periods
|
18 |
+
Create scatter plot showing PM2.5 vs PM10 correlation with trend line
|
19 |
+
Which cities need immediate emergency intervention with PM2.5 >100 μg/m³?
|
20 |
+
Identify cities showing consistent pollution improvement for policy replication
|
21 |
+
Which months require targeted interventions based on highest pollution spikes?
|
22 |
+
Compare pollution levels between industrial vs non-industrial cities for policy focus
|
23 |
+
Rank states by average air quality to prioritize national-level resource allocation
|
24 |
+
Which cities have PM2.5 levels in 'hazardous' category (>250 μg/m³) requiring urgent action?
|
25 |
+
Calculate population-weighted pollution exposure to identify areas affecting most people
|
26 |
+
Show cities with worsening pollution trends that need immediate policy intervention
|
27 |
+
Compare pollution reduction success: which cities improved most and how?
|
28 |
+
Identify seasonal emergency periods when public health advisories should be issued
|
|
|
|
src.py
CHANGED
@@ -20,24 +20,19 @@ hf_token = os.getenv("HF_TOKEN")
|
|
20 |
gemini_token = os.getenv("GEMINI_TOKEN")
|
21 |
|
22 |
# Debug print (remove in production)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
models = {
|
28 |
-
"gpt-oss-120b": "openai/gpt-oss-120b",
|
29 |
-
"qwen3-32b": "qwen/qwen3-32b",
|
30 |
"gpt-oss-20b": "openai/gpt-oss-20b",
|
31 |
-
"
|
|
|
32 |
"llama3.3": "llama-3.3-70b-versatile",
|
33 |
"deepseek-R1": "deepseek-r1-distill-llama-70b",
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"gemini-
|
37 |
-
"gemini-2.0-flash": "gemini-2.0-flash",
|
38 |
-
"gemini-2.0-flash-lite": "gemini-2.0-flash-lite",
|
39 |
-
# "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct"
|
40 |
-
# "llama3.1": "llama-3.1-8b-instant"
|
41 |
}
|
42 |
|
43 |
def log_interaction(user_query, model_name, response_content, generated_code, execution_time, error_message=None, is_image=False):
|
@@ -101,284 +96,461 @@ def preprocess_and_load_df(path: str) -> pd.DataFrame:
|
|
101 |
raise Exception(f"Error loading dataframe: {e}")
|
102 |
|
103 |
|
|
|
104 |
def get_from_user(prompt):
|
105 |
"""Format user prompt"""
|
106 |
return {"role": "user", "content": prompt}
|
107 |
|
108 |
|
|
|
|
|
109 |
def ask_question(model_name, question):
|
110 |
"""Ask question with comprehensive error handling and logging"""
|
111 |
start_time = datetime.now()
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
execution_time = (datetime.now() - start_time).total_seconds()
|
118 |
-
log_interaction(
|
119 |
-
user_query=question,
|
120 |
-
model_name=model_name,
|
121 |
-
response_content=content or msg,
|
122 |
-
generated_code="",
|
123 |
-
execution_time=execution_time,
|
124 |
-
error_message=log_msg,
|
125 |
-
is_image=False
|
126 |
-
)
|
127 |
-
return {
|
128 |
-
"role": "assistant",
|
129 |
-
"content": content or msg,
|
130 |
-
"gen_code": "",
|
131 |
-
"ex_code": "",
|
132 |
-
"last_prompt": question,
|
133 |
-
"error": log_msg
|
134 |
-
}
|
135 |
-
def validate_api_token(token, token_name, msg_if_missing):
|
136 |
-
"""Check for missing/empty API tokens"""
|
137 |
-
if not token or token.strip() == "":
|
138 |
-
return make_error_response(
|
139 |
-
msg="Missing or empty API token",
|
140 |
-
log_msg="Missing or empty API token",
|
141 |
-
content=msg_if_missing
|
142 |
-
)
|
143 |
-
return None # OK
|
144 |
-
def run_safe_exec(full_code, df=None, extra_globals=None):
|
145 |
-
"""Safely execute generated code and handle errors"""
|
146 |
-
local_vars = {}
|
147 |
|
148 |
-
|
149 |
-
# Skip style file and set everything manually to ensure it works
|
150 |
-
plt.rcParams['figure.dpi'] = 1200
|
151 |
-
plt.rcParams['savefig.dpi'] = 1200
|
152 |
-
plt.rcParams['figure.figsize'] = [9, 6]
|
153 |
-
plt.rcParams['figure.facecolor'] = 'white'
|
154 |
-
plt.rcParams['savefig.facecolor'] = 'white'
|
155 |
-
plt.rcParams['savefig.bbox'] = 'tight'
|
156 |
-
plt.rcParams['font.size'] = 11
|
157 |
-
plt.rcParams['axes.titlesize'] = 14
|
158 |
-
plt.rcParams['axes.labelsize'] = 12
|
159 |
-
plt.rcParams['xtick.labelsize'] = 10
|
160 |
-
plt.rcParams['ytick.labelsize'] = 10
|
161 |
-
plt.rcParams['legend.fontsize'] = 10
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
# ------------------------
|
193 |
-
# Step 2: Init LLM
|
194 |
-
# ------------------------
|
195 |
-
try:
|
196 |
-
if "gemini" in model_name:
|
197 |
-
token_error = validate_api_token(
|
198 |
-
fresh_gemini_token,
|
199 |
-
"GEMINI_TOKEN",
|
200 |
-
"Gemini API token not available or empty. Please set GEMINI_TOKEN in your environment variable."
|
201 |
)
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
|
|
205 |
try:
|
206 |
-
llm =
|
207 |
-
model=models[model_name],
|
208 |
-
|
209 |
-
temperature=0
|
210 |
)
|
211 |
-
#
|
212 |
-
llm.invoke("Test")
|
213 |
-
|
214 |
except Exception as api_error:
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
)
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
api_key=fresh_groq_token,
|
236 |
-
temperature=0
|
237 |
-
)
|
238 |
-
llm.invoke("Test") # test API key
|
239 |
-
# print("Groq API key test successful")
|
240 |
-
except Exception as api_error:
|
241 |
-
return make_error_response(
|
242 |
-
msg="API Connection Error",
|
243 |
-
log_msg=str(api_error),
|
244 |
-
content="API Key Error: Your Groq API key appears to be invalid, expired, or restricted. Please check your GROQ_API_KEY in the .env file."
|
245 |
-
if "organization_restricted"in str(api_error).lower() or "unauthorized" in str(api_error).lower()
|
246 |
-
else f"API Connection Error: {api_error}"
|
247 |
-
)
|
248 |
-
except Exception as e:
|
249 |
-
return make_error_response(str(e), str(e))
|
250 |
-
# ------------------------
|
251 |
-
# Step 3: Check AQ_met_data.csv
|
252 |
-
# ------------------------
|
253 |
-
if not os.path.exists("AQ_met_data.csv"):
|
254 |
-
return make_error_response(
|
255 |
-
msg="Data file not found",
|
256 |
-
log_msg="Data file not found",
|
257 |
-
content="AQ_met_data.csv file not found. Please ensure the data file is in the correct location."
|
258 |
-
)
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
states_df = pd.read_csv("states_data.csv")
|
264 |
-
ncap_df = pd.read_csv("ncap_funding_data.csv")
|
265 |
-
|
266 |
-
# Template for user query
|
267 |
-
template = f"""```python
|
268 |
import pandas as pd
|
269 |
import matplotlib.pyplot as plt
|
270 |
-
import seaborn as sns
|
271 |
-
import streamlit as st
|
272 |
import uuid
|
273 |
import calendar
|
274 |
import numpy as np
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
# states_df is a pandas DataFrame of state-wise population, area and whether state is union territory or not of India.
|
284 |
-
{new_line.join(map(lambda x: '# '+x, str(states_df.dtypes).split(new_line)))}
|
285 |
-
# ncap_df is a pandas DataFrame of funding given to the cities of India from 2019-2022, under The National Clean Air Program (NCAP).
|
286 |
-
{new_line.join(map(lambda x: '# '+x, str(ncap_df.dtypes).split(new_line)))}
|
287 |
# Question: {question.strip()}
|
288 |
# Generate code to answer the question and save result in 'answer' variable
|
289 |
# If creating a plot, save it with a unique filename and store the filename in 'answer'
|
290 |
# If returning text/numbers, store the result directly in 'answer'
|
291 |
```"""
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
319 |
-
# Step 5: Extract code
|
320 |
-
# ------------------------
|
321 |
-
code_part = answer.split("```python")[1].split("```")[0] if "```python" in answer else answer
|
322 |
-
full_code = f"""
|
323 |
{template.split("```python")[1].split("```")[0]}
|
324 |
{code_part}
|
325 |
"""
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
else:
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
log_interaction(
|
346 |
user_query=question,
|
347 |
model_name=model_name,
|
348 |
-
response_content=
|
349 |
-
generated_code=
|
350 |
execution_time=execution_time,
|
351 |
-
error_message=
|
352 |
is_image=False
|
353 |
)
|
|
|
354 |
return {
|
355 |
-
"role": "assistant",
|
356 |
-
"content":
|
357 |
-
"gen_code":
|
358 |
-
"ex_code":
|
359 |
"last_prompt": question,
|
360 |
-
"error":
|
361 |
-
}
|
362 |
-
|
363 |
-
# ------------------------
|
364 |
-
# Step 7: Success logging
|
365 |
-
# ------------------------
|
366 |
-
is_image = isinstance(answer_result, str) and answer_result.endswith(('.png', '.jpg', '.jpeg'))
|
367 |
-
log_interaction(
|
368 |
-
user_query=question,
|
369 |
-
model_name=model_name,
|
370 |
-
response_content=str(answer_result),
|
371 |
-
generated_code=full_code,
|
372 |
-
execution_time=execution_time,
|
373 |
-
error_message=None,
|
374 |
-
is_image=is_image
|
375 |
-
)
|
376 |
-
|
377 |
-
return {
|
378 |
-
"role": "assistant",
|
379 |
-
"content": answer_result,
|
380 |
-
"gen_code": full_code,
|
381 |
-
"ex_code": full_code,
|
382 |
-
"last_prompt": question,
|
383 |
-
"error": None
|
384 |
-
}
|
|
|
20 |
gemini_token = os.getenv("GEMINI_TOKEN")
|
21 |
|
22 |
# Debug print (remove in production)
|
23 |
+
print(f"Debug - Groq Token: {'Present' if Groq_Token else 'Missing'}")
|
24 |
+
print(f"Debug - Groq Token Value: {Groq_Token[:10] + '...' if Groq_Token else 'None'}")
|
25 |
+
print(f"Debug - Gemini Token: {'Present' if gemini_token else 'Missing'}")
|
26 |
|
27 |
models = {
|
|
|
|
|
28 |
"gpt-oss-20b": "openai/gpt-oss-20b",
|
29 |
+
"gpt-oss-120b": "openai/gpt-oss-120b",
|
30 |
+
"llama3.1": "llama-3.1-8b-instant",
|
31 |
"llama3.3": "llama-3.3-70b-versatile",
|
32 |
"deepseek-R1": "deepseek-r1-distill-llama-70b",
|
33 |
+
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
|
34 |
+
"llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct",
|
35 |
+
"gemini-pro": "gemini-1.5-pro"
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
|
38 |
def log_interaction(user_query, model_name, response_content, generated_code, execution_time, error_message=None, is_image=False):
|
|
|
96 |
raise Exception(f"Error loading dataframe: {e}")
|
97 |
|
98 |
|
99 |
+
|
100 |
def get_from_user(prompt):
|
101 |
"""Format user prompt"""
|
102 |
return {"role": "user", "content": prompt}
|
103 |
|
104 |
|
105 |
+
|
106 |
+
|
107 |
def ask_question(model_name, question):
|
108 |
"""Ask question with comprehensive error handling and logging"""
|
109 |
start_time = datetime.now()
|
110 |
+
try:
|
111 |
+
# Reload environment variables to get fresh values
|
112 |
+
load_dotenv(override=True)
|
113 |
+
fresh_groq_token = os.getenv("GROQ_API_KEY")
|
114 |
+
fresh_gemini_token = os.getenv("GEMINI_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
print(f"ask_question - Fresh Groq Token: {'Present' if fresh_groq_token else 'Missing'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Check API availability with fresh tokens
|
119 |
+
if model_name == "gemini-pro":
|
120 |
+
if not fresh_gemini_token or fresh_gemini_token.strip() == "":
|
121 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
122 |
+
error_msg = "Missing or empty API token"
|
123 |
+
|
124 |
+
# Log the failed interaction
|
125 |
+
log_interaction(
|
126 |
+
user_query=question,
|
127 |
+
model_name=model_name,
|
128 |
+
response_content="Gemini API token not available or empty",
|
129 |
+
generated_code="",
|
130 |
+
execution_time=execution_time,
|
131 |
+
error_message=error_msg,
|
132 |
+
is_image=False
|
133 |
+
)
|
134 |
+
|
135 |
+
return {
|
136 |
+
"role": "assistant",
|
137 |
+
"content": "Gemini API token not available or empty. Please set GEMINI_TOKEN in your environment variables.",
|
138 |
+
"gen_code": "",
|
139 |
+
"ex_code": "",
|
140 |
+
"last_prompt": question,
|
141 |
+
"error": error_msg
|
142 |
+
}
|
143 |
+
llm = ChatGoogleGenerativeAI(
|
144 |
+
model=models[model_name],
|
145 |
+
google_api_key=fresh_gemini_token,
|
146 |
+
temperature=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
+
else:
|
149 |
+
if not fresh_groq_token or fresh_groq_token.strip() == "":
|
150 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
151 |
+
error_msg = "Missing or empty API token"
|
152 |
+
|
153 |
+
# Log the failed interaction
|
154 |
+
log_interaction(
|
155 |
+
user_query=question,
|
156 |
+
model_name=model_name,
|
157 |
+
response_content="Groq API token not available or empty",
|
158 |
+
generated_code="",
|
159 |
+
execution_time=execution_time,
|
160 |
+
error_message=error_msg,
|
161 |
+
is_image=False
|
162 |
+
)
|
163 |
+
|
164 |
+
return {
|
165 |
+
"role": "assistant",
|
166 |
+
"content": "Groq API token not available or empty. Please set GROQ_API_KEY in your environment variables and restart the application.",
|
167 |
+
"gen_code": "",
|
168 |
+
"ex_code": "",
|
169 |
+
"last_prompt": question,
|
170 |
+
"error": error_msg
|
171 |
+
}
|
172 |
|
173 |
+
# Test the API key by trying to create the client
|
174 |
try:
|
175 |
+
llm = ChatGroq(
|
176 |
+
model=models[model_name],
|
177 |
+
api_key=fresh_groq_token,
|
178 |
+
temperature=0.1
|
179 |
)
|
180 |
+
# Test with a simple call to verify the API key works
|
181 |
+
test_response = llm.invoke("Test")
|
182 |
+
print("API key test successful")
|
183 |
except Exception as api_error:
|
184 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
185 |
+
error_msg = str(api_error)
|
186 |
+
|
187 |
+
if "organization_restricted" in error_msg.lower() or "unauthorized" in error_msg.lower():
|
188 |
+
response_content = "API Key Error: Your Groq API key appears to be invalid, expired, or restricted. Please check your API key in the .env file."
|
189 |
+
log_error_msg = f"API key validation failed: {error_msg}"
|
190 |
+
else:
|
191 |
+
response_content = f"API Connection Error: {error_msg}"
|
192 |
+
log_error_msg = error_msg
|
193 |
+
|
194 |
+
# Log the failed interaction
|
195 |
+
log_interaction(
|
196 |
+
user_query=question,
|
197 |
+
model_name=model_name,
|
198 |
+
response_content=response_content,
|
199 |
+
generated_code="",
|
200 |
+
execution_time=execution_time,
|
201 |
+
error_message=log_error_msg,
|
202 |
+
is_image=False
|
203 |
)
|
204 |
+
|
205 |
+
return {
|
206 |
+
"role": "assistant",
|
207 |
+
"content": response_content,
|
208 |
+
"gen_code": "",
|
209 |
+
"ex_code": "",
|
210 |
+
"last_prompt": question,
|
211 |
+
"error": log_error_msg
|
212 |
+
}
|
213 |
|
214 |
+
# Check if data file exists
|
215 |
+
if not os.path.exists("Data.csv"):
|
216 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
217 |
+
error_msg = "Data file not found"
|
218 |
+
|
219 |
+
# Log the failed interaction
|
220 |
+
log_interaction(
|
221 |
+
user_query=question,
|
222 |
+
model_name=model_name,
|
223 |
+
response_content="Data.csv file not found",
|
224 |
+
generated_code="",
|
225 |
+
execution_time=execution_time,
|
226 |
+
error_message=error_msg,
|
227 |
+
is_image=False
|
228 |
)
|
229 |
+
|
230 |
+
return {
|
231 |
+
"role": "assistant",
|
232 |
+
"content": "Data.csv file not found. Please ensure the data file is in the correct location.",
|
233 |
+
"gen_code": "",
|
234 |
+
"ex_code": "",
|
235 |
+
"last_prompt": question,
|
236 |
+
"error": error_msg
|
237 |
+
}
|
238 |
|
239 |
+
df_check = pd.read_csv("Data.csv")
|
240 |
+
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
241 |
+
df_check = df_check.head(5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
new_line = "\n"
|
244 |
+
|
245 |
+
template = f"""```python
|
|
|
|
|
|
|
|
|
|
|
246 |
import pandas as pd
|
247 |
import matplotlib.pyplot as plt
|
|
|
|
|
248 |
import uuid
|
249 |
import calendar
|
250 |
import numpy as np
|
251 |
+
|
252 |
+
# Set professional matplotlib styling
|
253 |
+
plt.rcParams.update({{
|
254 |
+
'font.size': 12,
|
255 |
+
'figure.dpi': 400,
|
256 |
+
'figure.facecolor': 'white',
|
257 |
+
'axes.facecolor': 'white',
|
258 |
+
'axes.edgecolor': '#e2e8f0',
|
259 |
+
'axes.linewidth': 1.2,
|
260 |
+
'axes.labelcolor': '#374151',
|
261 |
+
'axes.spines.top': False,
|
262 |
+
'axes.spines.right': False,
|
263 |
+
'axes.spines.left': True,
|
264 |
+
'axes.spines.bottom': True,
|
265 |
+
'axes.grid': True,
|
266 |
+
'grid.color': '#f1f5f9',
|
267 |
+
'grid.linewidth': 0.8,
|
268 |
+
'grid.alpha': 0.7,
|
269 |
+
'xtick.color': '#6b7280',
|
270 |
+
'ytick.color': '#6b7280',
|
271 |
+
'text.color': '#374151',
|
272 |
+
'figure.figsize': [12, 6],
|
273 |
+
'axes.prop_cycle': plt.cycler('color', ['#3b82f6', '#ef4444', '#10b981', '#f59e0b', '#8b5cf6', '#06b6d4'])
|
274 |
+
}})
|
275 |
+
|
276 |
+
df = pd.read_csv("Data.csv")
|
277 |
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
278 |
+
|
279 |
+
# Available columns and data types:
|
280 |
+
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
281 |
+
|
|
|
|
|
|
|
|
|
282 |
# Question: {question.strip()}
|
283 |
# Generate code to answer the question and save result in 'answer' variable
|
284 |
# If creating a plot, save it with a unique filename and store the filename in 'answer'
|
285 |
# If returning text/numbers, store the result directly in 'answer'
|
286 |
```"""
|
287 |
|
288 |
+
system_prompt = """Generate Python code to answer the user's question about air quality data.
|
289 |
+
|
290 |
+
CRITICAL: Only generate Python code - no explanations, no thinking, just clean executable code.
|
291 |
+
|
292 |
+
AVAILABLE LIBRARIES:
|
293 |
+
You can use these pre-installed libraries:
|
294 |
+
- pandas, numpy (data manipulation)
|
295 |
+
- matplotlib, seaborn, plotly (visualization)
|
296 |
+
- statsmodels (statistical modeling, trend analysis)
|
297 |
+
- scikit-learn (machine learning, regression)
|
298 |
+
- geopandas (geospatial analysis)
|
299 |
+
|
300 |
+
LIBRARY USAGE RULES:
|
301 |
+
- For trend analysis: Use numpy.polyfit(x, y, 1) for simple linear trends
|
302 |
+
- For regression: Use sklearn.linear_model.LinearRegression() for robust regression
|
303 |
+
- For statistical modeling: Use statsmodels only if needed, otherwise use numpy/sklearn
|
304 |
+
- Always import libraries at the top: import numpy as np, from sklearn.linear_model import LinearRegression
|
305 |
+
- Handle missing libraries gracefully with try-except around imports
|
306 |
+
|
307 |
+
OUTPUT TYPE REQUIREMENTS:
|
308 |
+
1. PLOT GENERATION (for "plot", "chart", "visualize", "show trend", "graph"):
|
309 |
+
- MUST create matplotlib figure with proper labels, title, legend
|
310 |
+
- MUST save plot: filename = f"plot_{uuid.uuid4().hex[:8]}.png"
|
311 |
+
- MUST call plt.savefig(filename, dpi=300, bbox_inches='tight')
|
312 |
+
- MUST call plt.close() to prevent memory leaks
|
313 |
+
- MUST store filename in 'answer' variable: answer = filename
|
314 |
+
- Handle empty data gracefully before plotting
|
315 |
+
|
316 |
+
2. TEXT ANSWERS (for simple "Which", "What", single values):
|
317 |
+
- Store direct string answer in 'answer' variable
|
318 |
+
- Example: answer = "December had the highest pollution"
|
319 |
+
|
320 |
+
3. DATAFRAMES (for lists, rankings, comparisons, multiple results):
|
321 |
+
- Create clean DataFrame with descriptive column names
|
322 |
+
- Sort appropriately for readability
|
323 |
+
- Store DataFrame in 'answer' variable: answer = result_df
|
324 |
+
|
325 |
+
MANDATORY SAFETY & ROBUSTNESS RULES:
|
326 |
+
|
327 |
+
DATA VALIDATION (ALWAYS CHECK):
|
328 |
+
- Check if DataFrame exists and not empty: if df.empty: answer = "No data available"
|
329 |
+
- Validate required columns exist: if 'PM2.5' not in df.columns: answer = "Required data not available"
|
330 |
+
- Check for sufficient data: if len(df) < 10: answer = "Insufficient data for analysis"
|
331 |
+
- Remove invalid/missing values: df = df.dropna(subset=['PM2.5', 'city', 'Timestamp'])
|
332 |
+
- Use early exit pattern: if condition: answer = "error message"; else: continue with analysis
|
333 |
+
|
334 |
+
OPERATION SAFETY (PREVENT CRASHES):
|
335 |
+
- Wrap risky operations in try-except blocks
|
336 |
+
- Check denominators before division: if denominator == 0: continue
|
337 |
+
- Validate indexing bounds: if idx >= len(array): continue
|
338 |
+
- Check for empty results after filtering: if result_df.empty: answer = "No data found"
|
339 |
+
- Convert data types explicitly: pd.to_numeric(), .astype(int), .astype(str)
|
340 |
+
- Handle timezone issues with datetime operations
|
341 |
+
- NO return statements - this is script context, use if/else logic flow
|
342 |
+
|
343 |
+
PLOT GENERATION (MANDATORY FOR PLOTS):
|
344 |
+
- Check data exists before plotting: if plot_data.empty: answer = "No data to plot"
|
345 |
+
- Always create new figure: plt.figure(figsize=(12, 8))
|
346 |
+
- Add comprehensive labels: plt.title(), plt.xlabel(), plt.ylabel()
|
347 |
+
- Handle long city names: plt.xticks(rotation=45, ha='right')
|
348 |
+
- Use tight layout: plt.tight_layout()
|
349 |
+
- CRITICAL PLOT SAVING SEQUENCE (no return statements):
|
350 |
+
1. filename = f"plot_{uuid.uuid4().hex[:8]}.png"
|
351 |
+
2. plt.savefig(filename, dpi=300, bbox_inches='tight')
|
352 |
+
3. plt.close()
|
353 |
+
4. answer = filename
|
354 |
+
- Use if/else logic: if data_valid: create_plot(); answer = filename else: answer = "error"
|
355 |
+
|
356 |
+
CRITICAL CODING PRACTICES:
|
357 |
+
|
358 |
+
DATA VALIDATION & SAFETY:
|
359 |
+
- Always check if DataFrames/Series are empty before operations: if df.empty: return
|
360 |
+
- Use .dropna() to handle missing values or .fillna() with appropriate defaults
|
361 |
+
- Validate column names exist before accessing: if 'column' in df.columns
|
362 |
+
- Check data types before operations: df['col'].dtype, isinstance() checks
|
363 |
+
- Handle edge cases: empty results, single row/column DataFrames, all NaN columns
|
364 |
+
- Use .copy() when modifying DataFrames to avoid SettingWithCopyWarning
|
365 |
+
|
366 |
+
VARIABLE & TYPE HANDLING:
|
367 |
+
- Use descriptive variable names (avoid single letters in complex operations)
|
368 |
+
- Ensure all variables are defined before use - initialize with defaults
|
369 |
+
- Convert pandas/numpy objects to proper Python types before operations
|
370 |
+
- Convert datetime/period objects appropriately: .astype(str), .dt.strftime(), int()
|
371 |
+
- Always cast to appropriate types for indexing: int(), str(), list()
|
372 |
+
- CRITICAL: Convert pandas/numpy values to int before list indexing: int(value) for calendar.month_name[int(month_value)]
|
373 |
+
- Use explicit type conversions rather than relying on implicit casting
|
374 |
+
|
375 |
+
PANDAS OPERATIONS:
|
376 |
+
- Reference DataFrame properly: df['column'] not 'column' in operations
|
377 |
+
- Use .loc/.iloc correctly for indexing - avoid chained indexing
|
378 |
+
- Use .reset_index() after groupby operations when needed for clean DataFrames
|
379 |
+
- Sort results for consistent output: .sort_values(), .sort_index()
|
380 |
+
- Use .round() for numerical results to avoid excessive decimals
|
381 |
+
- Chain operations carefully - split complex chains for readability
|
382 |
+
|
383 |
+
MATPLOTLIB & PLOTTING:
|
384 |
+
- Always call plt.close() after saving plots to prevent memory leaks
|
385 |
+
- Use descriptive titles, axis labels, and legends
|
386 |
+
- Handle cases where no data exists for plotting
|
387 |
+
- Use proper figure sizing: plt.figure(figsize=(width, height))
|
388 |
+
- Convert datetime indices to strings for plotting if needed
|
389 |
+
- Use color palettes consistently
|
390 |
+
|
391 |
+
ERROR PREVENTION:
|
392 |
+
- Use try-except blocks for operations that might fail
|
393 |
+
- Check denominators before division operations
|
394 |
+
- Validate array/list lengths before indexing
|
395 |
+
- Use .get() method for dictionary access with defaults
|
396 |
+
- Handle timezone-aware vs naive datetime objects consistently
|
397 |
+
- Use proper string formatting and encoding for text output
|
398 |
+
|
399 |
+
TECHNICAL REQUIREMENTS:
|
400 |
+
- Save final result in variable called 'answer'
|
401 |
+
- For TEXT: Store the direct answer as a string in 'answer'
|
402 |
+
- For PLOTS: Save with unique filename f"plot_{{uuid.uuid4().hex[:8]}}.png" and store filename in 'answer'
|
403 |
+
- For DATAFRAMES: Store the pandas DataFrame directly in 'answer' (e.g., answer = result_df)
|
404 |
+
- Always use .iloc or .loc properly for pandas indexing
|
405 |
+
- Close matplotlib figures with plt.close() to prevent memory leaks
|
406 |
+
- Use proper column name checks before accessing columns
|
407 |
+
- For dataframes, ensure proper column names and sorting for readability
|
408 |
+
"""
|
409 |
+
|
410 |
+
query = f"""{system_prompt}
|
411 |
+
|
412 |
+
Complete the following code to answer the user's question:
|
413 |
+
|
414 |
+
{template}
|
415 |
+
"""
|
416 |
+
|
417 |
+
# Make API call
|
418 |
+
if model_name == "gemini-pro":
|
419 |
+
response = llm.invoke(query)
|
420 |
+
answer = response.content
|
421 |
+
else:
|
422 |
+
response = llm.invoke(query)
|
423 |
+
answer = response.content
|
424 |
+
|
425 |
+
# Extract and execute code with enhanced error handling
|
426 |
+
try:
|
427 |
+
if "```python" in answer:
|
428 |
+
code_part = answer.split("```python")[1].split("```")[0]
|
429 |
+
else:
|
430 |
+
code_part = answer
|
431 |
|
432 |
+
full_code = f"""
|
|
|
|
|
|
|
|
|
433 |
{template.split("```python")[1].split("```")[0]}
|
434 |
{code_part}
|
435 |
"""
|
436 |
+
|
437 |
+
# Execute code in a controlled environment with better error handling
|
438 |
+
local_vars = {}
|
439 |
+
global_vars = {
|
440 |
+
'pd': pd,
|
441 |
+
'plt': plt,
|
442 |
+
'os': os,
|
443 |
+
'uuid': __import__('uuid'),
|
444 |
+
'calendar': __import__('calendar'),
|
445 |
+
'np': __import__('numpy')
|
446 |
+
}
|
447 |
+
|
448 |
+
exec(full_code, global_vars, local_vars)
|
449 |
+
|
450 |
+
# Get the answer
|
451 |
+
if 'answer' in local_vars:
|
452 |
+
answer_result = local_vars['answer']
|
453 |
+
else:
|
454 |
+
answer_result = "Code executed but no result was saved in 'answer' variable"
|
455 |
+
|
456 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
457 |
+
|
458 |
+
# Determine if output is an image
|
459 |
+
is_image = isinstance(answer_result, str) and any(answer_result.endswith(ext) for ext in ['.png', '.jpg', '.jpeg'])
|
460 |
+
|
461 |
+
# Log successful interaction
|
462 |
+
log_interaction(
|
463 |
+
user_query=question,
|
464 |
+
model_name=model_name,
|
465 |
+
response_content=str(answer_result),
|
466 |
+
generated_code=full_code,
|
467 |
+
execution_time=execution_time,
|
468 |
+
error_message=None,
|
469 |
+
is_image=is_image
|
470 |
+
)
|
471 |
+
|
472 |
+
return {
|
473 |
+
"role": "assistant",
|
474 |
+
"content": answer_result,
|
475 |
+
"gen_code": full_code,
|
476 |
+
"ex_code": full_code,
|
477 |
+
"last_prompt": question,
|
478 |
+
"error": None
|
479 |
+
}
|
480 |
+
|
481 |
+
except Exception as code_error:
|
482 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
483 |
+
error_msg = str(code_error)
|
484 |
+
|
485 |
+
# Classify and provide user-friendly error messages
|
486 |
+
user_friendly_msg = "I encountered an error while analyzing your data. "
|
487 |
+
|
488 |
+
if "unmatched" in error_msg.lower() or "invalid syntax" in error_msg.lower():
|
489 |
+
user_friendly_msg += "There was a syntax error in the generated code (missing brackets or quotes). Please try rephrasing your question or try again."
|
490 |
+
elif "not defined" in error_msg.lower():
|
491 |
+
user_friendly_msg += "There was a variable naming error in the generated code. Please try asking the question again."
|
492 |
+
elif "has no attribute" in error_msg.lower():
|
493 |
+
user_friendly_msg += "There was an issue accessing data properties. Please try a simpler version of your question."
|
494 |
+
elif "division by zero" in error_msg.lower():
|
495 |
+
user_friendly_msg += "The calculation involved division by zero, possibly due to missing data. Please try a different time period or location."
|
496 |
+
elif "empty" in error_msg.lower() or "no data" in error_msg.lower():
|
497 |
+
user_friendly_msg += "No relevant data was found for your query. Please try adjusting the time period, location, or criteria."
|
498 |
+
else:
|
499 |
+
user_friendly_msg += f"Technical error: {error_msg}"
|
500 |
+
|
501 |
+
user_friendly_msg += "\n\n💡 **Suggestions:**\n- Try rephrasing your question\n- Use simpler terms\n- Check if the data exists for your specified criteria"
|
502 |
+
|
503 |
+
# Log the failed code execution
|
504 |
+
log_interaction(
|
505 |
+
user_query=question,
|
506 |
+
model_name=model_name,
|
507 |
+
response_content=user_friendly_msg,
|
508 |
+
generated_code=full_code if 'full_code' in locals() else "",
|
509 |
+
execution_time=execution_time,
|
510 |
+
error_message=error_msg,
|
511 |
+
is_image=False
|
512 |
+
)
|
513 |
+
|
514 |
+
return {
|
515 |
+
"role": "assistant",
|
516 |
+
"content": user_friendly_msg,
|
517 |
+
"gen_code": full_code if 'full_code' in locals() else "",
|
518 |
+
"ex_code": full_code if 'full_code' in locals() else "",
|
519 |
+
"last_prompt": question,
|
520 |
+
"error": error_msg
|
521 |
+
}
|
522 |
+
|
523 |
+
except Exception as e:
|
524 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
525 |
+
error_msg = str(e)
|
526 |
+
|
527 |
+
# Handle specific API errors
|
528 |
+
if "organization_restricted" in error_msg:
|
529 |
+
response_content = "API Organization Restricted: Your API key access has been restricted. Please check your Groq API key or try generating a new one."
|
530 |
+
log_error_msg = "API access restricted"
|
531 |
+
elif "rate_limit" in error_msg.lower():
|
532 |
+
response_content = "Rate limit exceeded. Please wait a moment and try again."
|
533 |
+
log_error_msg = "Rate limit exceeded"
|
534 |
else:
|
535 |
+
response_content = f"Error: {error_msg}"
|
536 |
+
log_error_msg = error_msg
|
537 |
+
|
538 |
+
# Log the failed interaction
|
539 |
log_interaction(
|
540 |
user_query=question,
|
541 |
model_name=model_name,
|
542 |
+
response_content=response_content,
|
543 |
+
generated_code="",
|
544 |
execution_time=execution_time,
|
545 |
+
error_message=log_error_msg,
|
546 |
is_image=False
|
547 |
)
|
548 |
+
|
549 |
return {
|
550 |
+
"role": "assistant",
|
551 |
+
"content": response_content,
|
552 |
+
"gen_code": "",
|
553 |
+
"ex_code": "",
|
554 |
"last_prompt": question,
|
555 |
+
"error": log_error_msg
|
556 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
states_data.csv
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
state,population,area (km2),isUnionTerritory
|
2 |
-
Uttar Pradesh,199812341,240928,False
|
3 |
-
Maharashtra,112374333,307713,False
|
4 |
-
Bihar,104099452,94163,False
|
5 |
-
West Bengal,91276115,88752,False
|
6 |
-
Madhya Pradesh,72626809,308252,False
|
7 |
-
Tamil Nadu,72147030,130058,False
|
8 |
-
Rajasthan,68548437,342239,False
|
9 |
-
Karnataka,61095297,191791,False
|
10 |
-
Gujarat,60439692,196024,False
|
11 |
-
Andhra Pradesh,49577103,162975,False
|
12 |
-
Odisha,41974219,155707,False
|
13 |
-
Telangana,35003674,112077,False
|
14 |
-
Kerala,33406061,38863,False
|
15 |
-
Jharkhand,32988134,79716,False
|
16 |
-
Assam,31205576,78438,False
|
17 |
-
Punjab,27743338,50362,False
|
18 |
-
Chhattisgarh,25545198,135192,False
|
19 |
-
Delhi,16787941,1484,True
|
20 |
-
Haryana,25351462,44212,False
|
21 |
-
Jammu and Kashmir,12267032,42241,True
|
22 |
-
Uttarakhand,10086292,53483,False
|
23 |
-
Himachal Pradesh,6864602,55673,False
|
24 |
-
Tripura,3673917,10491,False
|
25 |
-
Manipur,2570390,22327,False
|
26 |
-
Meghalaya,2966889,22429,False
|
27 |
-
Nagaland,1978502,16579,False
|
28 |
-
Arunachal Pradesh,1383727,83743,False
|
29 |
-
Puducherry,1247953,479,True
|
30 |
-
Mizoram,1097206,21081,False
|
31 |
-
Chandigarh,1055450,114,True
|
32 |
-
Sikkim,610577,7096,False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
system_prompt.txt
CHANGED
@@ -3,7 +3,6 @@ I have a pandas dataframe data of PM2.5 and PM10.
|
|
3 |
* Frequency of data is daily.
|
4 |
* `pollution` generally means `PM2.5`.
|
5 |
* You already have df, so don't read the csv file
|
6 |
-
* Available libraries: pandas, matplotlib, numpy, seaborn, plotly, geopandas, statsmodels, scikit-learn
|
7 |
* Don't print anything, but save result in a variable `answer` and make it global.
|
8 |
* Unless explicitly mentioned, don't consider the result as a plot.
|
9 |
* PM2.5 guidelines: India: 60, WHO: 15.
|
|
|
3 |
* Frequency of data is daily.
|
4 |
* `pollution` generally means `PM2.5`.
|
5 |
* You already have df, so don't read the csv file
|
|
|
6 |
* Don't print anything, but save result in a variable `answer` and make it global.
|
7 |
* Unless explicitly mentioned, don't consider the result as a plot.
|
8 |
* PM2.5 guidelines: India: 60, WHO: 15.
|
test_image.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import seaborn as sns
|
4 |
-
import uuid
|
5 |
-
import calendar
|
6 |
-
import numpy as np
|
7 |
-
# Set professional matplotlib styling with high resolution
|
8 |
-
#plt.style.use('vayuchat.mplstyle')
|
9 |
-
df = pd.read_csv("AQ_met_data.csv")
|
10 |
-
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
11 |
-
states_df = pd.read_csv("states_data.csv")
|
12 |
-
ncap_df = pd.read_csv("ncap_funding_data.csv")
|
13 |
-
# df is pandas DataFrame with air quality data from India. Data frequency is daily from 2017 to 2024. The data has the following columns and data types:
|
14 |
-
# Unnamed: 0 int64
|
15 |
-
# Timestamp datetime64[ns]
|
16 |
-
# State object
|
17 |
-
# City object
|
18 |
-
# Station object
|
19 |
-
# site_id object
|
20 |
-
# Year int64
|
21 |
-
# PM2.5 (µg/m³) float64
|
22 |
-
# PM10 (µg/m³) float64
|
23 |
-
# NO (µg/m³) float64
|
24 |
-
# NO2 (µg/m³) float64
|
25 |
-
# NOx (ppb) float64
|
26 |
-
# NH3 (µg/m³) float64
|
27 |
-
# SO2 (µg/m³) float64
|
28 |
-
# CO (mg/m³) float64
|
29 |
-
# Ozone (µg/m³) float64
|
30 |
-
# AT (°C) float64
|
31 |
-
# RH (%) float64
|
32 |
-
# WS (m/s) float64
|
33 |
-
# WD (deg) float64
|
34 |
-
# RF (mm) float64
|
35 |
-
# TOT-RF (mm) float64
|
36 |
-
# SR (W/mt2) float64
|
37 |
-
# BP (mmHg) float64
|
38 |
-
# VWS (m/s) float64
|
39 |
-
# dtype: object
|
40 |
-
# states_df is a pandas DataFrame of state-wise population, area and whether state is union territory or not of India.
|
41 |
-
# state object
|
42 |
-
# population int64
|
43 |
-
# area (km2) int64
|
44 |
-
# isUnionTerritory bool
|
45 |
-
# dtype: object
|
46 |
-
# ncap_df is a pandas DataFrame of funding given to the cities of India from 2019-2022, under The National Clean Air Program (NCAP).
|
47 |
-
# S. No. int64
|
48 |
-
# state object
|
49 |
-
# city object
|
50 |
-
# Amount released during FY 2019-20 float64
|
51 |
-
# Amount released during FY 2020-21 float64
|
52 |
-
# Amount released during FY 2021-22 float64
|
53 |
-
# Total fund released float64
|
54 |
-
# Utilisation as on June 2022 float64
|
55 |
-
# dtype: object
|
56 |
-
# Question: Compare the wind speed and PM2.5 levels during Delhi’s most polluted week (highest PM2.5) in December 2024 with the previous 15 days and the following 15 days on a time series plot.
|
57 |
-
# Generate code to answer the question and save result in 'answer' variable
|
58 |
-
# If creating a plot, save it with a unique filename and store the filename in 'answer'
|
59 |
-
# If returning text/numbers, store the result directly in 'answer'
|
60 |
-
|
61 |
-
|
62 |
-
import pandas as pd
|
63 |
-
import matplotlib.pyplot as plt
|
64 |
-
import seaborn as sns
|
65 |
-
import uuid
|
66 |
-
import numpy as np
|
67 |
-
|
68 |
-
# Ensure data is loaded
|
69 |
-
if df.empty:
|
70 |
-
answer = "No data available"
|
71 |
-
else:
|
72 |
-
try:
|
73 |
-
# Filter for Delhi in December 2024
|
74 |
-
df_delhi = df[
|
75 |
-
(df['City'].str.contains('Delhi', case=False, na=False)) &
|
76 |
-
(df['Timestamp'].dt.year == 2024) &
|
77 |
-
(df['Timestamp'].dt.month == 12)
|
78 |
-
].copy()
|
79 |
-
df_delhi = df_delhi.dropna(subset=['PM2.5 (µg/m³)', 'WS (m/s)'])
|
80 |
-
df_delhi = df_delhi.sort_values('Timestamp')
|
81 |
-
|
82 |
-
# Need at least a full week to compute rolling mean
|
83 |
-
if len(df_delhi) < 7:
|
84 |
-
answer = "Insufficient data"
|
85 |
-
else:
|
86 |
-
# Compute 7‑day rolling mean of PM2.5
|
87 |
-
df_delhi['PM2.5_roll7'] = df_delhi['PM2.5 (µg/m³)'].rolling(window=7, min_periods=7).mean()
|
88 |
-
# Identify the window with the highest mean PM2.5
|
89 |
-
max_idx = df_delhi['PM2.5_roll7'].idxmax()
|
90 |
-
max_end_date = df_delhi.loc[max_idx, 'Timestamp']
|
91 |
-
max_start_date = max_end_date - pd.Timedelta(days=6)
|
92 |
-
|
93 |
-
# Define extended window: 15 days before start and 15 days after end
|
94 |
-
ext_start = max_start_date - pd.Timedelta(days=15)
|
95 |
-
ext_end = max_end_date + pd.Timedelta(days=15)
|
96 |
-
|
97 |
-
# Filter data for the extended period
|
98 |
-
mask = (df_delhi['Timestamp'] >= ext_start) & (df_delhi['Timestamp'] <= ext_end)
|
99 |
-
df_plot = df_delhi.loc[mask].copy()
|
100 |
-
|
101 |
-
if df_plot.empty or len(df_plot) < 30:
|
102 |
-
answer = "Insufficient data"
|
103 |
-
else:
|
104 |
-
# Plot time series
|
105 |
-
plt.figure(figsize=(9, 6))
|
106 |
-
ax1 = plt.gca()
|
107 |
-
sns.lineplot(data=df_plot, x='Timestamp', y='PM2.5 (µg/m³)', ax=ax1,
|
108 |
-
label='PM2.5 (µg/m³)', color='tab:red')
|
109 |
-
ax1.set_ylabel('PM2.5 (µg/m³)', color='tab:red')
|
110 |
-
ax1.tick_params(axis='y', labelcolor='tab:red')
|
111 |
-
|
112 |
-
ax2 = ax1.twinx()
|
113 |
-
sns.lineplot(data=df_plot, x='Timestamp', y='WS (m/s)', ax=ax2,
|
114 |
-
label='Wind Speed (m/s)', color='tab:blue')
|
115 |
-
ax2.set_ylabel('Wind Speed (m/s)', color='tab:blue')
|
116 |
-
ax2.tick_params(axis='y', labelcolor='tab:blue')
|
117 |
-
|
118 |
-
plt.title('Delhi – PM2.5 and Wind Speed around Most Polluted Week (Dec 2024)')
|
119 |
-
plt.xlabel('Date')
|
120 |
-
plt.tight_layout()
|
121 |
-
|
122 |
-
# Save plot
|
123 |
-
filename = f"plot.png"
|
124 |
-
plt.savefig(filename, dpi=1200, bbox_inches='tight', facecolor='white')
|
125 |
-
plt.close()
|
126 |
-
|
127 |
-
answer = filename
|
128 |
-
except Exception as e:
|
129 |
-
answer = "Unable to complete analysis with available data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vayuchat.mplstyle
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
# VayuChat - Modern Professional Style
|
2 |
-
# Inspired by modern data visualization best practices
|
3 |
-
|
4 |
-
# Typography & Layout
|
5 |
-
font.size: 11
|
6 |
-
font.family: sans-serif
|
7 |
-
font.sans-serif: Inter, SF Pro Display, Segoe UI, system-ui, Arial
|
8 |
-
figure.titlesize: 14
|
9 |
-
axes.titlesize: 12
|
10 |
-
axes.labelsize: 10
|
11 |
-
xtick.labelsize: 9
|
12 |
-
ytick.labelsize: 9
|
13 |
-
legend.fontsize: 9
|
14 |
-
|
15 |
-
# Figure & DPI - Ultra High Resolution
|
16 |
-
figure.dpi: 1200
|
17 |
-
figure.facecolor: white
|
18 |
-
figure.edgecolor: none
|
19 |
-
figure.figsize: 9, 6
|
20 |
-
figure.autolayout: True
|
21 |
-
|
22 |
-
# Modern Color Palette (inspired by Tailwind/GitHub)
|
23 |
-
axes.prop_cycle: cycler('color', ['2563eb', 'dc2626', '059669', 'ea580c', '7c3aed', '0891b2', 'be123c', '16a34a', 'c2410c', '9333ea'])
|
24 |
-
|
25 |
-
# Axes Styling
|
26 |
-
axes.facecolor: white
|
27 |
-
axes.edgecolor: e5e7eb
|
28 |
-
axes.linewidth: 1
|
29 |
-
axes.labelcolor: 374151
|
30 |
-
axes.axisbelow: True
|
31 |
-
axes.spines.left: True
|
32 |
-
axes.spines.bottom: True
|
33 |
-
axes.spines.top: False
|
34 |
-
axes.spines.right: False
|
35 |
-
|
36 |
-
# Grid (subtle and clean)
|
37 |
-
axes.grid: True
|
38 |
-
grid.color: f3f4f6
|
39 |
-
grid.linewidth: 0.8
|
40 |
-
grid.alpha: 0.7
|
41 |
-
axes.grid.axis: both
|
42 |
-
|
43 |
-
# Ticks
|
44 |
-
xtick.direction: out
|
45 |
-
ytick.direction: out
|
46 |
-
xtick.major.size: 4
|
47 |
-
ytick.major.size: 4
|
48 |
-
xtick.minor.size: 2
|
49 |
-
ytick.minor.size: 2
|
50 |
-
xtick.color: 6b7280
|
51 |
-
ytick.color: 6b7280
|
52 |
-
xtick.major.pad: 7
|
53 |
-
ytick.major.pad: 7
|
54 |
-
|
55 |
-
# Legend
|
56 |
-
legend.frameon: True
|
57 |
-
legend.fancybox: True
|
58 |
-
legend.shadow: False
|
59 |
-
legend.framealpha: 0.95
|
60 |
-
legend.facecolor: white
|
61 |
-
legend.edgecolor: e5e7eb
|
62 |
-
legend.borderpad: 0.8
|
63 |
-
legend.columnspacing: 2
|
64 |
-
legend.handlelength: 1.5
|
65 |
-
legend.handletextpad: 0.8
|
66 |
-
|
67 |
-
# Lines & Markers
|
68 |
-
lines.linewidth: 2.5
|
69 |
-
lines.markersize: 7
|
70 |
-
lines.solid_capstyle: round
|
71 |
-
patch.linewidth: 0.5
|
72 |
-
patch.facecolor: 3b82f6
|
73 |
-
patch.edgecolor: none
|
74 |
-
patch.antialiased: True
|
75 |
-
|
76 |
-
# Scatter plots
|
77 |
-
scatter.marker: o
|
78 |
-
scatter.edgecolors: white
|
79 |
-
|
80 |
-
# Bars
|
81 |
-
patch.force_edgecolor: False
|
82 |
-
|
83 |
-
# Text & Annotations
|
84 |
-
text.color: 1f2937
|
85 |
-
text.antialiased: True
|
86 |
-
|
87 |
-
# Savefig - Ultra High Resolution
|
88 |
-
savefig.dpi: 1200
|
89 |
-
savefig.facecolor: white
|
90 |
-
savefig.edgecolor: none
|
91 |
-
savefig.bbox: tight
|
92 |
-
savefig.pad_inches: 0.2
|
93 |
-
savefig.format: png
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|