File size: 22,674 Bytes
5238467
 
 
 
 
 
 
 
1897b6f
8e10a53
5238467
 
925b7f8
efabdc6
 
9138f15
1897b6f
b76a81b
1a6de5e
14af4d8
aef7fad
1028cad
 
 
1897b6f
5238467
595ae94
1a6de5e
595ae94
 
 
a8a94b6
5238467
1a6de5e
 
 
efabdc6
 
 
 
d758673
 
 
 
 
efabdc6
 
 
 
 
 
 
 
 
5238467
 
de8ae12
5238467
de8ae12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5238467
a8a94b6
 
 
 
 
 
 
 
 
 
 
 
1028cad
 
 
 
 
 
a8a94b6
 
 
 
a549dc4
feb9b54
a8a94b6
 
 
 
 
 
 
 
 
 
 
 
1028cad
a8a94b6
 
1028cad
a8a94b6
1028cad
 
feb9b54
a8a94b6
1028cad
a8a94b6
ee1911a
74894bc
1028cad
74894bc
 
1028cad
 
1a6de5e
 
 
 
 
 
 
 
 
5238467
 
de8ae12
 
 
4f37585
 
 
 
 
5238467
e3f64dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a6de5e
e3f64dd
 
 
 
 
 
 
 
1dda6b6
 
e3f64dd
5238467
e3f64dd
 
 
1028cad
e3f64dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af4d8
e3f64dd
 
 
 
 
 
50d48cc
e3f64dd
 
5238467
1a6de5e
 
 
 
 
 
14af4d8
 
e3f64dd
 
 
 
 
 
 
d7ef5a5
 
1028cad
 
d7ef5a5
 
1028cad
 
d7ef5a5
b76a81b
d7ef5a5
 
 
 
 
 
e3f64dd
14af4d8
e83dc6d
14af4d8
 
 
1a6de5e
a8a94b6
74894bc
a8a94b6
 
23fe483
 
1028cad
1a6de5e
de8ae12
 
 
 
 
 
1028cad
5238467
de8ae12
 
1028cad
de8ae12
d758673
 
 
de8ae12
 
 
0ffc43b
de8ae12
 
 
bedb522
0ffc43b
bedb522
95ec64d
de8ae12
 
bedb522
de8ae12
 
5238467
de8ae12
 
 
 
 
 
 
d758673
 
1028cad
d758673
de8ae12
d758673
de8ae12
d758673
 
 
 
feb9b54
 
 
d758673
1028cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8ae12
 
1028cad
de8ae12
 
d758673
feb9b54
a8a94b6
1028cad
de8ae12
 
 
 
9766876
de8ae12
d758673
 
de8ae12
 
9766876
de8ae12
d758673
 
de8ae12
 
9766876
de8ae12
d758673
 
de8ae12
 
9766876
de8ae12
d758673
 
de8ae12
 
9766876
de8ae12
d758673
 
de8ae12
595ae94
d758673
de8ae12
 
 
 
 
 
adf74d8
 
 
 
 
 
 
de8ae12
 
a8a94b6
de8ae12
 
 
a8a94b6
de8ae12
 
 
595ae94
20a0fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8ae12
 
 
 
 
 
 
 
 
 
8e10a53
de8ae12
 
 
 
 
20a0fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8ae12
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.

This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

from tempfile import NamedTemporaryFile
import argparse
import torch
import gradio as gr
import os
import time
import warnings
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import apply_fade, apply_tafade
from audiocraft.utils.extend import generate_music_segments, add_settings_to_image, INTERRUPTING
import numpy as np
import random
#from pathlib import Path
#from typing import List, Union
import librosa

MODEL = None
MODELS = None
IS_SHARED_SPACE = "Surn/UnlimitedMusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
MOVE_TO_CPU = False
MAX_PROMPT_INDEX = 0

def interrupt_callback():
    return INTERRUPTED

def interrupt():
    global INTERRUPTING
    INTERRUPTING = True

def toggle_audio_src(choice):
    if choice == "mic":
        return gr.update(source="microphone", value=None, label="Microphone")
    else:
        return gr.update(source="upload", value=None, label="File")

def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        out = gr.make_waveform(*args, **kwargs)
        print("Make a video took", time.time() - be)
        return out

def load_model(version):
    global MODEL, MODELS, UNLOAD_MODEL
    print("Loading model", version)
    if MODELS is None:
        return MusicGen.get_pretrained(version)
    else:
        t1 = time.monotonic()
        if MODEL is not None:
            MODEL.to('cpu') # move to cache
            print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
            t1 = time.monotonic()
        if MODELS.get(version) is None:
            print("Loading model %s from disk" % version)
            result = MusicGen.get_pretrained(version)
            MODELS[version] = result
            print("Model loaded in %.2fs" % (time.monotonic() - t1))
            return result
        result = MODELS[version].to('cuda')
        print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
        return result

def get_filename(file):
    # extract filename from file object
    filename = None
    if file is not None:
        filename = file.name
    return filename

def get_filename_from_filepath(filepath):
    file_name = os.path.basename(filepath)
    file_base, file_extension = os.path.splitext(file_name)
    return file_base, file_extension

def get_melody(melody_filepath):
        audio_data= list(librosa.load(melody_filepath, sr=None))
        audio_data[0], audio_data[1] = audio_data[1], audio_data[0]
        melody = tuple(audio_data)
        return melody

def load_melody_filepath(melody_filepath, title):
    # get melody filename
    #$Union[str, os.PathLike]    
    symbols = ['_', '.', '-']
    if (melody_filepath is None) or (melody_filepath == ""):
        return title, gr.update(maximum=0, value=0) , gr.update(value="melody", interactive=True)   
    
    if (title is None) or ("MusicGen" in title) or (title == ""):
        melody_name, melody_extension = get_filename_from_filepath(melody_filepath)
        # fix melody name for symbols
        for symbol in symbols:
            melody_name = melody_name.replace(symbol, ' ').title()
    else:
        melody_name = title

    print(f"Melody name: {melody_name}, Melody Filepath: {melody_filepath}\n")

    # get melody length in number of segments and modify the UI
    melody = get_melody(melody_filepath)
    sr, melody_data = melody[0], melody[1]
    segment_samples = sr * 30
    total_melodys = max(min((len(melody_data) // segment_samples), 25), 0) 
    print(f"Melody length: {len(melody_data)}, Melody segments: {total_melodys}\n")
    MAX_PROMPT_INDEX = total_melodys   

    return  gr.Textbox.update(value=melody_name), gr.update(maximum=MAX_PROMPT_INDEX, value=0), gr.update(value="melody", interactive=False)

def predict(model, text, melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap=1, prompt_index = 0, include_title = True, include_settings = True, harmony_only = False):
    global MODEL, INTERRUPTED, INTERRUPTING, MOVE_TO_CPU
    output_segments = None
    melody_name = "Not Used"
    melody = None
    if melody_filepath:
        melody_name, melody_extension = get_filename_from_filepath(melody_filepath)
        melody = get_melody(melody_filepath)

    INTERRUPTED = False
    INTERRUPTING = False
    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")

    if MODEL is None or MODEL.name != model:
        MODEL = load_model(model)
    else:
        if MOVE_TO_CPU:
            MODEL.to('cuda')
    
    # prevent hacking
    duration = min(duration, 720)
    overlap =  min(overlap, 15)
    # 

    output = None
    segment_duration = duration
    initial_duration = duration
    output_segments = []
    while duration > 0:
        if not output_segments: # first pass of long or short song
            if segment_duration > MODEL.lm.cfg.dataset.segment_duration:
                segment_duration = MODEL.lm.cfg.dataset.segment_duration
            else:
                segment_duration = duration
        else: # next pass of long song
            if duration + overlap < MODEL.lm.cfg.dataset.segment_duration:
                segment_duration = duration + overlap
            else:
                segment_duration = MODEL.lm.cfg.dataset.segment_duration
        # implement seed
        if seed < 0:
            seed = random.randint(0, 0xffff_ffff_ffff)
        torch.manual_seed(seed)


        print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}')
        MODEL.set_generation_params(
            use_sampling=True,
            top_k=topk,
            top_p=topp,
            temperature=temperature,
            cfg_coef=cfg_coef,
            duration=segment_duration,
            two_step_cfg=False,
            rep_penalty=0.5
        )

        if melody:
            # todo return excess duration, load next model and continue in loop structure building up output_segments
            if duration > MODEL.lm.cfg.dataset.segment_duration:
                output_segments, duration = generate_music_segments(text, melody, seed, MODEL, duration, overlap, MODEL.lm.cfg.dataset.segment_duration, prompt_index, harmony_only=False)
            else:
                # pure original code
                sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
                print(melody.shape)
                if melody.dim() == 2:
                    melody = melody[None]
                melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
                output = MODEL.generate_with_chroma(
                    descriptions=[text],
                    melody_wavs=melody,
                    melody_sample_rate=sr,
                    progress=True
                )
            # All output_segments are populated, so we can break the loop or set duration to 0
            break
        else:
            #output = MODEL.generate(descriptions=[text], progress=False)
            if not output_segments:
                next_segment = MODEL.generate(descriptions=[text], progress=True)
                duration -= segment_duration
            else:
                last_chunk = output_segments[-1][:, :, -overlap*MODEL.sample_rate:]
                next_segment = MODEL.generate_continuation(last_chunk, MODEL.sample_rate, descriptions=[text], progress=False)
                duration -= segment_duration - overlap
            output_segments.append(next_segment)

        if INTERRUPTING:
            INTERRUPTED = True
            INTERRUPTING = False
            print("Function execution interrupted!")
            raise gr.Error("Interrupted.")

    if output_segments:
        try:
            # Combine the output segments into one long audio file or stack tracks
            #output_segments = [segment.detach().cpu().float()[0] for segment in output_segments]
            #output = torch.cat(output_segments, dim=dimension)
            
            output = output_segments[0]
            for i in range(1, len(output_segments)):
                overlap_samples = overlap * MODEL.sample_rate
                #stack tracks and fade out/in
                overlapping_output_fadeout = output[:, :, -overlap_samples:]
                #overlapping_output_fadeout = apply_fade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True, curve_end=0.0, current_device=MODEL.device)
                overlapping_output_fadeout = apply_tafade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True,shape="linear")

                overlapping_output_fadein = output_segments[i][:, :, :overlap_samples]
                #overlapping_output_fadein = apply_fade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, curve_start=0.0, current_device=MODEL.device)
                overlapping_output_fadein = apply_tafade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, shape="linear")

                overlapping_output = torch.cat([overlapping_output_fadeout[:, :, :-(overlap_samples // 2)], overlapping_output_fadein],dim=2)
                print(f" overlap size Fade:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
                ##overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=1) #stack tracks
                ##print(f" overlap size stack:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
                #overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=2) #stack tracks
                #print(f" overlap size cat:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")               
                output = torch.cat([output[:, :, :-overlap_samples], overlapping_output, output_segments[i][:, :, overlap_samples:]], dim=dimension)
            output = output.detach().cpu().float()[0]
        except Exception as e:
            print(f"Error combining segments: {e}. Using the first segment only.")
            output = output_segments[0].detach().cpu().float()[0]
    else:
        output = output.detach().cpu().float()[0]

    with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:        
        video_description = f"{text}\n Duration: {str(initial_duration)} Dimension: {dimension}\n Top-k:{topk} Top-p:{topp}\n Randomness:{temperature}\n cfg:{cfg_coef} overlap: {overlap}\n Seed: {seed}\n Model: {model}\n Melody Condition:{melody_name}\n Sample Segment: {prompt_index}"
        if include_settings or include_title:
            background = add_settings_to_image(title if include_title else "", video_description if include_settings else "", background_path=background, font=settings_font, font_color=settings_font_color)
        audio_write(
            file.name, output, MODEL.sample_rate, strategy="loudness",
            loudness_headroom_db=18, loudness_compressor=True, add_suffix=False, channels=2)        
        waveform_video = make_waveform(file.name,bg_image=background, bar_count=45)
    if MOVE_TO_CPU:
        MODEL.to('cpu')
    if UNLOAD_MODEL:
        MODEL = None
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    return waveform_video, file.name, seed

def ui(**kwargs):
    css="""
    #col-container {max-width: 910px; margin-left: auto; margin-right: auto;}    
    a {text-decoration-line: underline; font-weight: 600;}
    #btn-generate {background-image:linear-gradient(to right bottom, rgb(157, 255, 157), rgb(229, 255, 235));}
    #btn-generate:hover {background-image:linear-gradient(to right bottom, rgb(229, 255, 229), rgb(255, 255, 255));}
    #btn-generate:active {background-image:linear-gradient(to right bottom, rgb(229, 255, 235), rgb(157, 255, 157));}
    """
    with gr.Blocks(title="UnlimitedMusicGen", css=css) as demo:
        gr.Markdown(
            """            
            # UnlimitedMusicGen
            This is your private demo for [UnlimitedMusicGen](https://github.com/Oncorporation/audiocraft), a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
            
            Disclaimer: This won't run on CPU only. Clone this App and run on GPU instance!
                        
            Todo: Working on improved transitions between 30 second segments, improve Interrupt.
            """
        )
        if IS_SHARED_SPACE and not torch.cuda.is_available():
            gr.Markdown("""
                ⚠ This Space doesn't work in this shared UI ⚠

                <a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
                <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
                to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
                """)
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Describe your music", interactive=True, value="4/4 100bpm 320kbps 48khz, Industrial/Electronic Soundtrack, Dark, Intense, Sci-Fi")
                    with gr.Column():                        
                        duration = gr.Slider(minimum=1, maximum=720, value=10, label="Duration", interactive=True)
                        model = gr.Radio(["melody", "medium", "small", "large"], label="AI Model", value="melody", interactive=True)
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="btn-generate")
                    # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                    _ = gr.Button("Interrupt", elem_id="btn-interrupt").click(fn=interrupt, queue=False)
                with gr.Row():
                    with gr.Column():
                        radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic")
                        melody_filepath = gr.Audio(source="upload", type="filepath", label="Melody Condition (optional)", interactive=True, elem_id="melody-input")                        
                    with gr.Column():
                        harmony_only = gr.Radio(label="Use Harmony Only",choices=["No", "Yes"], value="No", interactive=True, info="Remove Drums?")
                        prompt_index = gr.Slider(label="Melody Condition Sample Segment", minimum=-1, maximum=MAX_PROMPT_INDEX, step=1, value=0, interactive=True, info="Which 30 second segment to condition with, - 1 condition each segment independantly")                                                
                with gr.Accordion("Video", open=False):
                    with gr.Row():
                        background= gr.Image(value="./assets/background.png", source="upload", label="Background", shape=(768,512), type="filepath", interactive=True)
                        with gr.Column():
                            include_title = gr.Checkbox(label="Add Title", value=True, interactive=True)
                            include_settings = gr.Checkbox(label="Add Settings to background", value=True, interactive=True)
                    with gr.Row():
                        title = gr.Textbox(label="Title", value="UnlimitedMusicGen", interactive=True)
                        settings_font = gr.Text(label="Settings Font", value="./assets/arial.ttf", interactive=True)
                        settings_font_color = gr.ColorPicker(label="Settings Font Color", value="#c87f05", interactive=True)
                with gr.Accordion("Expert", open=False):
                    with gr.Row():
                        overlap = gr.Slider(minimum=1, maximum=15, value=2, step=1, label="Verse Overlap", interactive=True)
                        dimension = gr.Slider(minimum=-2, maximum=2, value=2, step=1, label="Dimension", info="determines which direction to add new segements of audio. (1 = stack tracks, 2 = lengthen, -2..0 = ?)", interactive=True)
                    with gr.Row():
                        topk = gr.Number(label="Top-k", value=280, precision=0, interactive=True)
                        topp = gr.Number(label="Top-p", value=1450, precision=0, interactive=True)
                        temperature = gr.Number(label="Randomness Temperature", value=0.75, precision=None, interactive=True)
                        cfg_coef = gr.Number(label="Classifier Free Guidance", value=8.5, precision=None, interactive=True)
                    with gr.Row():
                        seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
                        gr.Button('\U0001f3b2\ufe0f').style(full_width=False).click(fn=lambda: -1, outputs=[seed], queue=False)
                        reuse_seed = gr.Button('\u267b\ufe0f').style(full_width=False)
            with gr.Column() as c:
                output = gr.Video(label="Generated Music")
                wave_file = gr.File(label=".wav file", elem_id="output_wavefile", interactive=True)
                seed_used = gr.Number(label='Seed used', value=-1, interactive=False)

        radio.change(toggle_audio_src, radio, [melody_filepath], queue=False, show_progress=False)
        melody_filepath.change(load_melody_filepath, inputs=[melody_filepath, title], outputs=[title, prompt_index , model], api_name="melody_filepath_change", queue=False)
        reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False, api_name="reuse_seed")
        submit.click(predict, inputs=[model, text,melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap, prompt_index, include_title, include_settings, harmony_only], outputs=[output, wave_file, seed_used], api_name="submit")
        gr.Examples(
            fn=predict,
            examples=[
                [
                    "4/4 120bpm 320kbps 48khz, An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                    "melody",
                    "80s Pop Synth"
                ],
                [
                    "4/4 120bpm 320kbps 48khz, A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                    "melody",
                    "Country Guitar"
                ],
                [
                    "4/4 120bpm 320kbps 48khz, 90s rock song with electric guitar and heavy drums",
                    None,
                    "medium", 
                    "90s Rock Guitar"
                ],
                [
                    "4/4 120bpm 320kbps 48khz, a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
                    "./assets/bach.mp3",
                    "melody",
                    "EDM my Bach"
                ],
                [
                    "4/4 320kbps 48khz, lofi slow bpm electro chill with organic samples",
                    None,
                    "medium", 
                    "LoFi Chill"
                ],
            ],
            inputs=[text, melody_filepath, model, title],
            outputs=[output]
        )

        # Show the interface
        launch_kwargs = {}
        share = kwargs.get('share', False)
        server_port = kwargs.get('server_port', 0)
        server_name = kwargs.get('listen')

        launch_kwargs['server_name'] = server_name

        if server_port > 0:
            launch_kwargs['server_port'] = server_port
        if share:
            launch_kwargs['share'] = share
        launch_kwargs['favicon_path']= "./assets/favicon.ico"



        demo.queue(max_size=12).launch(**launch_kwargs)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )
    parser.add_argument(
        '--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
    )

    parser.add_argument(
        '--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
    )

    parser.add_argument(
        '--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
    )

    args = parser.parse_args()

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share
    launch_kwargs['favicon_path']= "./assets/favicon.ico"


    UNLOAD_MODEL = args.unload_model
    MOVE_TO_CPU = args.unload_to_cpu
    if args.cache:
        MODELS = {}

    ui(
        unload_to_cpu = MOVE_TO_CPU,
        share=args.share
        
    )