Spaces:
Paused
Paused
File size: 24,142 Bytes
f498ac0 be97fdc f498ac0 e0218b9 4c539b3 f498ac0 4c539b3 f498ac0 4c539b3 f498ac0 4a2bd0c f498ac0 4a2bd0c f498ac0 63bea2f f498ac0 d172fbe f498ac0 d172fbe f498ac0 d172fbe f498ac0 d172fbe f498ac0 63bea2f f498ac0 63bea2f f498ac0 63bea2f f498ac0 63bea2f f498ac0 63bea2f f498ac0 63bea2f f498ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import kornia
import os
import sys
import pathlib
import logging
import yaml
import nvdiffrast.torch as dr
from easydict import EasyDict
# Apply torchvision compatibility fixes
try:
import torchvision
print(f"torchvision {torchvision.__version__} imported successfully")
except (RuntimeError, AttributeError) as e:
if "operator torchvision::nms does not exist" in str(e) or "extension" in str(e):
print("Applying torchvision compatibility fixes...")
# Apply the same fixes as in app.py
import types
if not hasattr(torch, 'ops'):
torch.ops = types.SimpleNamespace()
if not hasattr(torch.ops, 'torchvision'):
torch.ops.torchvision = types.SimpleNamespace()
# Create dummy functions for problematic operators
torchvision_ops = ['nms', 'roi_align', 'roi_pool', 'ps_roi_align', 'ps_roi_pool']
for op_name in torchvision_ops:
if not hasattr(torch.ops.torchvision, op_name):
if op_name == 'nms':
setattr(torch.ops.torchvision, op_name, lambda *args, **kwargs: torch.zeros(0, dtype=torch.int64))
else:
setattr(torch.ops.torchvision, op_name, lambda *args, **kwargs: torch.zeros(0))
# Try importing again
try:
import torchvision
print("torchvision imported successfully after fixes")
except Exception as e2:
print(f"torchvision still has issues, but continuing: {e2}")
else:
print(f"Other torchvision error: {e}")
except ImportError:
print("torchvision not available, continuing without it")
from NeuralJacobianFields import SourceMesh
from nvdiffmodeling.src import render
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utilities.video import Video
from utilities.helpers import cosine_avg, create_scene, l1_avg
from utilities.camera import CameraBatch, get_camera_params
from utilities.clip_spatial import CLIPVisualEncoder
from utilities.resize_right import resize, cubic, linear, lanczos2, lanczos3
from packages.fashion_clip.fashion_clip.fashion_clip import FashionCLIP
from utils import *
from get_embeddings import *
from pytorch3d.structures import Meshes
from pytorch3d.loss import (
chamfer_distance,
mesh_edge_loss,
mesh_laplacian_smoothing,
mesh_normal_consistency,
)
from pytorch3d.ops import sample_points_from_meshes
def total_triangle_area(vertices):
# Calculate the sum of the areas of all triangles in the mesh
num_triangles = vertices.shape[0] // 3
triangle_vertices = vertices.view(num_triangles, 3, 3)
# Calculate the cross product for each triangle
cross_products = torch.cross(triangle_vertices[:, 1] - triangle_vertices[:, 0],
triangle_vertices[:, 2] - triangle_vertices[:, 0])
# Calculate the area of each triangle
areas = 0.5 * torch.norm(cross_products, dim=1)
# Sum the areas of all triangles
total_area = torch.sum(areas)
return total_area
def triangle_size_regularization(vertices):
# Penalize small triangles by minimizing the squared sum of triangle areas
return total_triangle_area(vertices)**2
def loop(cfg):
clip_flag = True
output_path = pathlib.Path(cfg['output_path'])
os.makedirs(output_path, exist_ok=True)
with open(output_path / 'config.yml', 'w') as f:
yaml.dump(cfg, f, default_flow_style=False)
cfg = EasyDict(cfg)
print(f'Output directory {cfg.output_path} created')
os.makedirs(output_path / 'tmp', exist_ok=True)
device = torch.device(f'cuda:{cfg.gpu}')
torch.cuda.set_device(device)
# Read mode flags from config if available, otherwise use defaults
text_input = cfg.get('text_input', False)
image_input = cfg.get('image_input', False)
fashion_image = cfg.get('fashion_image', False)
fashion_text = cfg.get('fashion_text', True) # Default to fashion text mode
use_target_mesh = cfg.get('use_target_mesh', True)
CLIP_embeddings = False # Always use FashionCLIP to avoid CLIP issues
# Always use FashionCLIP to avoid CLIP loading issues
print('Loading FashionCLIP model...')
try:
fclip = FashionCLIP('fashion-clip')
print('FashionCLIP loaded successfully')
except Exception as e:
print(f'Error loading FashionCLIP: {e}')
raise RuntimeError(f"Failed to load FashionCLIP: {e}")
# Load CLIPVisualEncoder with error handling
print('Loading CLIPVisualEncoder...')
try:
fe = CLIPVisualEncoder(cfg.consistency_clip_model, cfg.consistency_vit_stride, device)
print('CLIPVisualEncoder loaded successfully')
except Exception as e:
print(f'Error loading CLIPVisualEncoder: {e}')
print('Continuing without CLIPVisualEncoder...')
fe = None
# Use FashionCLIP for all modes to avoid CLIP loading issues
if fashion_image:
print('Processing with fashion image embeddings')
target_direction_embeds, delta_direction_embeds = get_fashion_img_embeddings(fclip, cfg, device, True)
elif fashion_text:
print('Processing with fashion text embeddings')
target_direction_embeds, delta_direction_embeds = get_fashion_text_embeddings(fclip, cfg, device)
elif text_input or image_input:
print('WARNING: Regular CLIP embeddings are disabled, using FashionCLIP instead')
if text_input:
target_direction_embeds, delta_direction_embeds = get_fashion_text_embeddings(fclip, cfg, device)
else:
target_direction_embeds, delta_direction_embeds = get_fashion_img_embeddings(fclip, cfg, device, True)
clip_mean = torch.tensor([0.48154660, 0.45782750, 0.40821073], device=device)
clip_std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=device)
# output video
video = Video(cfg.output_path)
# GL Context - with fallback for headless environments
print('Initializing nvdiffrast GL context...')
try:
glctx = dr.RasterizeGLContext()
print('nvdiffrast GL context initialized successfully')
use_gl_rendering = True
except Exception as e:
print(f'Error initializing nvdiffrast GL context: {e}')
print('This is likely due to missing EGL headers in headless environment.')
print('Using fallback rendering approach...')
glctx = None
use_gl_rendering = False
def fallback_render_mesh(mesh, mvp, campos, lightpos, light_power, resolution, **kwargs):
"""
Fallback rendering function when GL context is not available
Returns a simple colored mesh visualization
"""
try:
# Check if return_rast_map is requested
return_rast_map = kwargs.get('return_rast_map', False)
# Create a simple colored mesh visualization
# This is a basic fallback that creates a colored mesh without proper lighting
device = mesh.v_pos.device if hasattr(mesh, 'v_pos') and mesh.v_pos is not None else torch.device('cuda')
batch_size = 1
if return_rast_map:
# Return a dummy rasterization map for consistency
rast_map = torch.zeros(batch_size, resolution, resolution, 4, device=device)
rast_map[..., 3] = 1.0 # Set alpha to 1
return rast_map
else:
# Create a simple colored output
color = torch.ones(batch_size, resolution, resolution, 3, device=device) * 0.5 # Gray color
# Add some basic shading based on vertex positions
if hasattr(mesh, 'v_pos') and mesh.v_pos is not None:
# Normalize vertex positions for coloring
v_pos_norm = (mesh.v_pos - mesh.v_pos.min(dim=0)[0]) / (mesh.v_pos.max(dim=0)[0] - mesh.v_pos.min(dim=0)[0] + 1e-8)
# Use vertex positions to create a simple color gradient
color = color * 0.3 + v_pos_norm.mean(dim=0).unsqueeze(0).unsqueeze(0).unsqueeze(0) * 0.7
return color
except Exception as e:
print(f"Fallback rendering failed: {e}")
# Return a simple colored square as last resort
device = mesh.v_pos.device if hasattr(mesh, 'v_pos') and mesh.v_pos is not None else torch.device('cuda')
if kwargs.get('return_rast_map', False):
return torch.zeros(1, resolution, resolution, 4, device=device)
else:
return torch.ones(1, resolution, resolution, 3, device=device) * 0.5
def safe_render_mesh(glctx, mesh, mvp, campos, lightpos, light_power, resolution, **kwargs):
"""
Safe rendering function that uses GL context if available, otherwise falls back
"""
if glctx is not None and use_gl_rendering:
try:
return render.render_mesh(glctx, mesh, mvp, campos, lightpos, light_power, resolution, **kwargs)
except Exception as e:
print(f"GL rendering failed, using fallback: {e}")
return fallback_render_mesh(mesh, mvp, campos, lightpos, light_power, resolution, **kwargs)
else:
return fallback_render_mesh(mesh, mvp, campos, lightpos, light_power, resolution, **kwargs)
load_mesh = get_mesh(cfg.mesh, output_path, cfg.retriangulate, cfg.bsdf)
if use_target_mesh:
target_mesh = get_mesh(cfg.target_mesh, output_path, cfg.retriangulate, cfg.bsdf, 'mesh_target.obj')
# We construct a Meshes structure for the target mesh
trg_mesh_p3d = Meshes(verts=[target_mesh.v_pos], faces=[target_mesh.t_pos_idx])
jacobian_source = SourceMesh.SourceMesh(0, str(output_path / 'tmp' / 'mesh.obj'), {}, 1, ttype=torch.float)
if len(list((output_path / 'tmp').glob('*.npz'))) > 0:
logging.warn(f'Using existing Jacobian .npz files in {str(output_path)}/tmp/ ! Please check if this is intentional.')
# Check if the mesh file exists before loading
mesh_file_path = output_path / 'tmp' / 'mesh.obj'
print(f"Looking for mesh file at: {mesh_file_path}")
print(f"Absolute path: {mesh_file_path.absolute()}")
if not mesh_file_path.exists():
# List files in the tmp directory to see what's there
tmp_dir = output_path / 'tmp'
if tmp_dir.exists():
print(f"Files in {tmp_dir}:")
for file in tmp_dir.iterdir():
print(f" - {file.name}")
else:
print(f"Tmp directory {tmp_dir} does not exist")
raise FileNotFoundError(f"Mesh file not found: {mesh_file_path}. This indicates an issue with the mesh loading process.")
print(f"Mesh file exists at: {mesh_file_path}")
print("Loading jacobian source...")
jacobian_source.load()
jacobian_source.to(device)
# Validate that jacobian source loaded properly
if not hasattr(jacobian_source, 'jacobians_from_vertices') or jacobian_source.jacobians_from_vertices is None:
raise ValueError("Failed to load jacobian source. The jacobians_from_vertices method is not available.")
print("Jacobian source loaded successfully")
with torch.no_grad():
gt_jacobians = jacobian_source.jacobians_from_vertices(load_mesh.v_pos.unsqueeze(0))
# Validate that gt_jacobians is not empty
if gt_jacobians is None or gt_jacobians.shape[0] == 0:
raise ValueError("Failed to generate jacobians from vertices. This indicates an issue with the mesh or jacobian source.")
print(f"Generated jacobians with shape: {gt_jacobians.shape}")
gt_jacobians.requires_grad_(True)
optimizer = torch.optim.Adam([gt_jacobians], lr=cfg.lr)
cams_data = CameraBatch(
cfg.train_res,
[cfg.dist_min, cfg.dist_max],
[cfg.azim_min, cfg.azim_max],
[cfg.elev_alpha, cfg.elev_beta, cfg.elev_max],
[cfg.fov_min, cfg.fov_max],
cfg.aug_loc,
cfg.aug_light,
cfg.aug_bkg,
cfg.batch_size,
rand_solid=True
)
cams = torch.utils.data.DataLoader(cams_data, cfg.batch_size, num_workers=0, pin_memory=True)
best_losses = {'CLIP': np.inf, 'total': np.inf}
for out_type in ['final', 'best_clip', 'best_total', 'target_final']:
os.makedirs(output_path / f'mesh_{out_type}', exist_ok=True)
os.makedirs(output_path / 'images', exist_ok=True)
logger = SummaryWriter(str(output_path / 'logs'))
rot_ang = 0.0
t_loop = tqdm(range(cfg.epochs), leave=False)
if cfg.resize_method == 'cubic':
resize_method = cubic
elif cfg.resize_method == 'linear':
resize_method = linear
elif cfg.resize_method == 'lanczos2':
resize_method = lanczos2
elif cfg.resize_method == 'lanczos3':
resize_method = lanczos3
for it in t_loop:
# updated vertices from jacobians
n_vert = jacobian_source.vertices_from_jacobians(gt_jacobians).squeeze()
# Validate that n_vert is not empty
if n_vert is None or n_vert.shape[0] == 0:
raise ValueError("Generated vertices are empty. This indicates an issue with the jacobian source or mesh loading.")
print(f"Iteration {it}: Generated {n_vert.shape[0]} vertices")
# TODO: More texture code required to make it work ...
ready_texture = texture.Texture2D(
kornia.filters.gaussian_blur2d(
load_mesh.material['kd'].data.permute(0, 3, 1, 2),
kernel_size=(7, 7),
sigma=(3, 3),
).permute(0, 2, 3, 1).contiguous()
)
kd_notex = texture.Texture2D(torch.full_like(ready_texture.data, 0.5))
ready_specular = texture.Texture2D(
kornia.filters.gaussian_blur2d(
load_mesh.material['ks'].data.permute(0, 3, 1, 2),
kernel_size=(7, 7),
sigma=(3, 3),
).permute(0, 2, 3, 1).contiguous()
)
ready_normal = texture.Texture2D(
kornia.filters.gaussian_blur2d(
load_mesh.material['normal'].data.permute(0, 3, 1, 2),
kernel_size=(7, 7),
sigma=(3, 3),
).permute(0, 2, 3, 1).contiguous()
)
# Final mesh
m = mesh.Mesh(
n_vert,
load_mesh.t_pos_idx,
material={
'bsdf': cfg.bsdf,
'kd': kd_notex,
'ks': ready_specular,
'normal': ready_normal,
},
base=load_mesh # gets uvs etc from here
)
deformed_mesh_p3d = Meshes(verts=[m.v_pos], faces=[m.t_pos_idx])
render_mesh = create_scene([m.eval()], sz=512)
if it == 0:
base_mesh = render_mesh.clone()
base_mesh = mesh.auto_normals(base_mesh)
base_mesh = mesh.compute_tangents(base_mesh)
render_mesh = mesh.auto_normals(render_mesh)
render_mesh = mesh.compute_tangents(render_mesh)
if use_target_mesh:
# Target mesh
m_target = mesh.Mesh(
target_mesh.v_pos,
target_mesh.t_pos_idx,
material={
'bsdf': cfg.bsdf,
'kd': kd_notex,
'ks': ready_specular,
'normal': ready_normal,
},
base=target_mesh
)
render_target_mesh = create_scene([m_target.eval()], sz=512)
if it == 0:
base_target_mesh = render_target_mesh.clone()
base_target_mesh = mesh.auto_normals(base_target_mesh)
base_target_mesh = mesh.compute_tangents(base_target_mesh)
render_target_mesh = mesh.auto_normals(render_target_mesh)
render_target_mesh = mesh.compute_tangents(render_target_mesh)
# Logging mesh
if it % cfg.log_interval == 0:
with torch.no_grad():
params = get_camera_params(
cfg.log_elev,
rot_ang,
cfg.log_dist,
cfg.log_res,
cfg.log_fov,
)
rot_ang += 5
log_mesh = mesh.unit_size(render_mesh.eval(params))
log_image = safe_render_mesh(glctx, log_mesh, params['mvp'], params['campos'], params['lightpos'], cfg.log_light_power, cfg.log_res)
log_image = video.ready_image(log_image)
logger.add_mesh('predicted_mesh', vertices=log_mesh.v_pos.unsqueeze(0), faces=log_mesh.t_pos_idx.unsqueeze(0), global_step=it)
if cfg.adapt_dist and it > 0:
with torch.no_grad():
v_pos = m.v_pos.clone()
vmin = v_pos.amin(dim=0)
vmax = v_pos.amax(dim=0)
v_pos -= (vmin + vmax) / 2
mult = torch.cat([v_pos.amin(dim=0), v_pos.amax(dim=0)]).abs().amax().cpu()
cams.dataset.dist_min = cfg.dist_min * mult
cams.dataset.dist_max = cfg.dist_max * mult
params_camera = next(iter(cams))
for key in params_camera:
params_camera[key] = params_camera[key].to(device)
final_mesh = render_mesh.eval(params_camera)
train_render = safe_render_mesh(glctx, final_mesh, params_camera['mvp'], params_camera['campos'], params_camera['lightpos'], cfg.light_power, cfg.train_res)
# Handle permutation for fallback case
if train_render.shape[-1] == 3: # If it's already in the right format
train_render = train_render.permute(0, 3, 1, 2)
train_render = resize(train_render, out_shape=(224, 224), interp_method=resize_method)
if use_target_mesh:
final_target_mesh = render_target_mesh.eval(params_camera)
train_target_render = safe_render_mesh(glctx, final_target_mesh, params_camera['mvp'], params_camera['campos'], params_camera['lightpos'], cfg.light_power, cfg.train_res)
# Handle permutation for fallback case
if train_target_render.shape[-1] == 3: # If it's already in the right format
train_target_render = train_target_render.permute(0, 3, 1, 2)
train_target_render = resize(train_target_render, out_shape=(224, 224), interp_method=resize_method)
train_rast_map = safe_render_mesh(
glctx,
final_mesh,
params_camera['mvp'],
params_camera['campos'],
params_camera['lightpos'],
cfg.light_power,
cfg.train_res,
return_rast_map=True
)
if it == 0:
params_camera = next(iter(cams))
for key in params_camera:
params_camera[key] = params_camera[key].to(device)
base_render = safe_render_mesh(glctx, base_mesh.eval(params_camera), params_camera['mvp'], params_camera['campos'], params_camera['lightpos'], cfg.light_power, cfg.train_res)
# Handle permutation for fallback case
if base_render.shape[-1] == 3: # If it's already in the right format
base_render = base_render.permute(0, 3, 1, 2)
base_render = resize(base_render, out_shape=(224, 224), interp_method=resize_method)
if it % cfg.log_interval_im == 0:
log_idx = torch.randperm(cfg.batch_size)[:5]
s_log = train_render[log_idx, :, :, :]
s_log = torchvision.utils.make_grid(s_log)
ndarr = s_log.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(str(output_path / 'images' / f'epoch_{it}.png'))
if use_target_mesh:
s_log_target = train_target_render[log_idx, :, :, :]
s_log_target = torchvision.utils.make_grid(s_log_target)
ndarr = s_log_target.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(str(output_path / 'images' / f'epoch_{it}_target.png'))
obj.write_obj(
str(output_path / 'mesh_final'),
m.eval()
)
optimizer.zero_grad()
normalized_clip_render = (train_render - clip_mean[None, :, None, None]) / clip_std[None, :, None, None]
deformed_features = fclip.encode_image_tensors(train_render)
target_features = fclip.encode_image_tensors(train_target_render)
garment_loss = l1_avg(deformed_features, target_features)
l1_loss = l1_avg(train_render, train_target_render)
# We sample 10k points from the surface of each mesh
sample_src = sample_points_from_meshes(deformed_mesh_p3d, 10000)
sample_trg = sample_points_from_meshes(trg_mesh_p3d, 10000)
# We compare the two sets of pointclouds by computing (a) the chamfer loss
loss_chamfer, _ = chamfer_distance(sample_trg, sample_src)
loss_chamfer *= 25.
#
# and (b) the edge length of the predicted mesh
loss_edge = mesh_edge_loss(deformed_mesh_p3d)
# mesh normal consistency
loss_normal = mesh_normal_consistency(deformed_mesh_p3d)
# mesh laplacian smoothing
loss_laplacian = mesh_laplacian_smoothing(deformed_mesh_p3d, method="uniform")
loss_triangles = triangle_size_regularization(deformed_mesh_p3d.verts_list()[0])/100000.
logger.add_scalar('l1_loss', l1_loss, global_step=it)
logger.add_scalar('garment_loss', garment_loss, global_step=it)
# Jacobian regularization
r_loss = (((gt_jacobians) - torch.eye(3, 3, device=device)) ** 2).mean()
logger.add_scalar('jacobian_regularization', r_loss, global_step=it)
if cfg.consistency_loss_weight != 0 and fe is not None and train_rast_map is not None:
consistency_loss = compute_mv_cl(final_mesh, fe, normalized_clip_render, params_camera, train_rast_map, cfg, device)
else:
consistency_loss = r_loss
logger.add_scalar('consistency_loss', consistency_loss, global_step=it)
logger.add_scalar('chamfer', loss_chamfer, global_step=it)
logger.add_scalar('edge', loss_edge, global_step=it)
logger.add_scalar('normal', loss_normal, global_step=it)
logger.add_scalar('laplacian', loss_laplacian, global_step=it)
logger.add_scalar('triangles', loss_triangles, global_step=it)
if it > 1000 and clip_flag:
cfg.clip_weight = 0
cfg.consistency_loss_weight = 0
cfg.regularize_jacobians_weight = 0.025
clip_flag = False
regularizers = loss_chamfer + loss_edge + loss_normal + loss_laplacian + loss_triangles
total_loss = (cfg.clip_weight * garment_loss + cfg.delta_clip_weight * l1_loss +
cfg.regularize_jacobians_weight * r_loss + cfg.consistency_loss_weight * consistency_loss + regularizers)
logger.add_scalar('total_loss', total_loss, global_step=it)
total_loss.backward()
optimizer.step()
t_loop.set_description(
f'L1 = {cfg.delta_clip_weight * l1_loss.item()}, '
f'CLIP = {cfg.clip_weight * garment_loss.item()}, '
f'Jacb = {cfg.regularize_jacobians_weight * r_loss.item()}, '
f'MVC = {cfg.consistency_loss_weight * consistency_loss.item()}, '
f'Chamf = {loss_chamfer.item()}, '
f'Edge = {loss_edge.item()}, '
f'Normal = {loss_normal.item()}, '
f'Lapl = {loss_laplacian.item()}, '
f'Triang = {loss_triangles.item()}, '
f'Total = {total_loss.item()}')#_target
video.close()
obj.write_obj(
str(output_path / 'mesh_final'),
m.eval()
)
return
|