Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,980 Bytes
7e6946d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HIFI-GAN"""
from typing import Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.signal import get_window
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm
try:
from torch.nn.utils.parametrizations import weight_norm
except ImportError:
from torch.nn.utils import weight_norm # noqa
from flashcosyvoice.modules.hifigan_components.layers import (
ResBlock, SourceModuleHnNSF, SourceModuleHnNSF2, init_weights)
class ConvRNNF0Predictor(nn.Module):
def __init__(self,
num_class: int = 1,
in_channels: int = 80,
cond_channels: int = 512
):
super().__init__()
self.num_class = num_class
self.condnet = nn.Sequential(
weight_norm( # noqa
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
)
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.condnet(x)
x = x.transpose(1, 2)
return torch.abs(self.classifier(x).squeeze(-1))
class HiFTGenerator(nn.Module):
"""
HiFTNet Generator: Neural Source Filter + ISTFTNet
https://arxiv.org/abs/2309.09493
"""
def __init__(
self,
in_channels: int = 80,
base_channels: int = 512,
nb_harmonics: int = 8,
sampling_rate: int = 24000,
nsf_alpha: float = 0.1,
nsf_sigma: float = 0.003,
nsf_voiced_threshold: float = 10,
upsample_rates: List[int] = [8, 5, 3], # noqa
upsample_kernel_sizes: List[int] = [16, 11, 7], # noqa
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4}, # noqa
resblock_kernel_sizes: List[int] = [3, 7, 11], # noqa
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], # noqa
source_resblock_kernel_sizes: List[int] = [7, 7, 11], # noqa
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], # noqa
lrelu_slope: float = 0.1,
audio_limit: float = 0.99,
f0_predictor: torch.nn.Module = None,
):
super(HiFTGenerator, self).__init__()
self.out_channels = 1
self.nb_harmonics = nb_harmonics
self.sampling_rate = sampling_rate
self.istft_params = istft_params
self.lrelu_slope = lrelu_slope
self.audio_limit = audio_limit
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
self.m_source = this_SourceModuleHnNSF(
sampling_rate=sampling_rate,
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
harmonic_num=nb_harmonics,
sine_amp=nsf_alpha,
add_noise_std=nsf_sigma,
voiced_threshod=nsf_voiced_threshold)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
self.conv_pre = weight_norm( # noqa
Conv1d(in_channels, base_channels, 7, 1, padding=3)
)
# Up
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm( # noqa
ConvTranspose1d(
base_channels // (2**i),
base_channels // (2**(i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
# Down
self.source_downs = nn.ModuleList()
self.source_resblocks = nn.ModuleList()
downsample_rates = [1] + upsample_rates[::-1][:-1]
downsample_cum_rates = np.cumprod(downsample_rates)
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
if u == 1:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
)
else:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
)
self.source_resblocks.append(
ResBlock(base_channels // (2 ** (i + 1)), k, d)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = base_channels // (2**(i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(ResBlock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3)) # noqa
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = nn.ReflectionPad1d((1, 0))
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
self.f0_predictor = ConvRNNF0Predictor() if f0_predictor is None else f0_predictor
def remove_weight_norm(self):
print('Removing weight norm...')
for up in self.ups:
remove_weight_norm(up)
for resblock in self.resblocks:
resblock.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
self.m_source.remove_weight_norm()
for source_down in self.source_downs:
remove_weight_norm(source_down)
for source_resblock in self.source_resblocks:
source_resblock.remove_weight_norm()
def _stft(self, x):
spec = torch.stft(
x,
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
return_complex=True)
spec = torch.view_as_real(spec) # [B, F, TT, 2]
return spec[..., 0], spec[..., 1]
def _istft(self, magnitude, phase):
magnitude = torch.clip(magnitude, max=1e2)
real = magnitude * torch.cos(phase)
img = magnitude * torch.sin(phase)
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
return inverse_transform
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, self.lrelu_slope)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
# fusion
si = self.source_downs[i](s_stft)
si = self.source_resblocks[i](si)
x = x + si
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
x = self._istft(magnitude, phase)
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
return x
@torch.inference_mode()
def forward(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
# mel->f0
f0 = self.f0_predictor(speech_feat)
# f0->source
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
s, _, _ = self.m_source(s)
s = s.transpose(1, 2)
# use cache_source to avoid glitch
if cache_source.shape[2] != 0:
s[:, :, :cache_source.shape[2]] = cache_source
generated_speech = self.decode(x=speech_feat, s=s)
return generated_speech, s
|