File size: 9,980 Bytes
7e6946d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""HIFI-GAN"""

from typing import Dict, List

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.signal import get_window
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm

try:
    from torch.nn.utils.parametrizations import weight_norm
except ImportError:
    from torch.nn.utils import weight_norm  # noqa

from flashcosyvoice.modules.hifigan_components.layers import (
    ResBlock, SourceModuleHnNSF, SourceModuleHnNSF2, init_weights)


class ConvRNNF0Predictor(nn.Module):
    def __init__(self,
                 num_class: int = 1,
                 in_channels: int = 80,
                 cond_channels: int = 512
                 ):
        super().__init__()

        self.num_class = num_class
        self.condnet = nn.Sequential(
            weight_norm(  # noqa
                nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
            ),
            nn.ELU(),
            weight_norm(  # noqa
                nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
            ),
            nn.ELU(),
            weight_norm(  # noqa
                nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
            ),
            nn.ELU(),
            weight_norm(  # noqa
                nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
            ),
            nn.ELU(),
            weight_norm(  # noqa
                nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
            ),
            nn.ELU(),
        )
        self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.condnet(x)
        x = x.transpose(1, 2)
        return torch.abs(self.classifier(x).squeeze(-1))


class HiFTGenerator(nn.Module):
    """
    HiFTNet Generator: Neural Source Filter + ISTFTNet
    https://arxiv.org/abs/2309.09493
    """
    def __init__(
            self,
            in_channels: int = 80,
            base_channels: int = 512,
            nb_harmonics: int = 8,
            sampling_rate: int = 24000,
            nsf_alpha: float = 0.1,
            nsf_sigma: float = 0.003,
            nsf_voiced_threshold: float = 10,
            upsample_rates: List[int] = [8, 5, 3],  # noqa
            upsample_kernel_sizes: List[int] = [16, 11, 7],  # noqa
            istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},  # noqa
            resblock_kernel_sizes: List[int] = [3, 7, 11],  # noqa
            resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],  # noqa
            source_resblock_kernel_sizes: List[int] = [7, 7, 11],  # noqa
            source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],  # noqa
            lrelu_slope: float = 0.1,
            audio_limit: float = 0.99,
            f0_predictor: torch.nn.Module = None,
    ):
        super(HiFTGenerator, self).__init__()

        self.out_channels = 1
        self.nb_harmonics = nb_harmonics
        self.sampling_rate = sampling_rate
        self.istft_params = istft_params
        self.lrelu_slope = lrelu_slope
        self.audio_limit = audio_limit

        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        # NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
        this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
        self.m_source = this_SourceModuleHnNSF(
            sampling_rate=sampling_rate,
            upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
            harmonic_num=nb_harmonics,
            sine_amp=nsf_alpha,
            add_noise_std=nsf_sigma,
            voiced_threshod=nsf_voiced_threshold)
        self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])

        self.conv_pre = weight_norm(  # noqa
            Conv1d(in_channels, base_channels, 7, 1, padding=3)
        )

        # Up
        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(  # noqa
                    ConvTranspose1d(
                        base_channels // (2**i),
                        base_channels // (2**(i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )

        # Down
        self.source_downs = nn.ModuleList()
        self.source_resblocks = nn.ModuleList()
        downsample_rates = [1] + upsample_rates[::-1][:-1]
        downsample_cum_rates = np.cumprod(downsample_rates)
        for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
            if u == 1:
                self.source_downs.append(
                    Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
                )
            else:
                self.source_downs.append(
                    Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
                )

            self.source_resblocks.append(
                ResBlock(base_channels // (2 ** (i + 1)), k, d)
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = base_channels // (2**(i + 1))
            for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
                self.resblocks.append(ResBlock(ch, k, d))

        self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))  # noqa
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)
        self.reflection_pad = nn.ReflectionPad1d((1, 0))
        self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
        self.f0_predictor = ConvRNNF0Predictor() if f0_predictor is None else f0_predictor

    def remove_weight_norm(self):
        print('Removing weight norm...')
        for up in self.ups:
            remove_weight_norm(up)
        for resblock in self.resblocks:
            resblock.remove_weight_norm()
        remove_weight_norm(self.conv_pre)
        remove_weight_norm(self.conv_post)
        self.m_source.remove_weight_norm()
        for source_down in self.source_downs:
            remove_weight_norm(source_down)
        for source_resblock in self.source_resblocks:
            source_resblock.remove_weight_norm()

    def _stft(self, x):
        spec = torch.stft(
            x,
            self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
            return_complex=True)
        spec = torch.view_as_real(spec)  # [B, F, TT, 2]
        return spec[..., 0], spec[..., 1]

    def _istft(self, magnitude, phase):
        magnitude = torch.clip(magnitude, max=1e2)
        real = magnitude * torch.cos(phase)
        img = magnitude * torch.sin(phase)
        inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
                                        self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
        return inverse_transform

    def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
        s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
        s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)

        x = self.conv_pre(x)
        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, self.lrelu_slope)
            x = self.ups[i](x)

            if i == self.num_upsamples - 1:
                x = self.reflection_pad(x)

            # fusion
            si = self.source_downs[i](s_stft)
            si = self.source_resblocks[i](si)
            x = x + si

            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels

        x = F.leaky_relu(x)
        x = self.conv_post(x)
        magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
        phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :])  # actually, sin is redundancy

        x = self._istft(magnitude, phase)
        x = torch.clamp(x, -self.audio_limit, self.audio_limit)
        return x

    @torch.inference_mode()
    def forward(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
        # mel->f0
        f0 = self.f0_predictor(speech_feat)
        # f0->source
        s = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t
        s, _, _ = self.m_source(s)
        s = s.transpose(1, 2)
        # use cache_source to avoid glitch
        if cache_source.shape[2] != 0:
            s[:, :, :cache_source.shape[2]] = cache_source
        generated_speech = self.decode(x=speech_feat, s=s)
        return generated_speech, s