File size: 34,732 Bytes
9f0d781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
import os
import re
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Type, Union
import requests
import yaml
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub.hf_api import upload_file
from huggingface_hub.repocard_data import (
CardData,
DatasetCardData,
EvalResult,
ModelCardData,
SpaceCardData,
eval_results_to_model_index,
model_index_to_eval_results,
)
from huggingface_hub.utils import get_session, is_jinja_available, yaml_dump
from . import constants
from .errors import EntryNotFoundError
from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args
logger = logging.get_logger(__name__)
TEMPLATE_MODELCARD_PATH = Path(__file__).parent / "templates" / "modelcard_template.md"
TEMPLATE_DATASETCARD_PATH = Path(__file__).parent / "templates" / "datasetcard_template.md"
# exact same regex as in the Hub server. Please keep in sync.
# See https://github.com/huggingface/moon-landing/blob/main/server/lib/ViewMarkdown.ts#L18
REGEX_YAML_BLOCK = re.compile(r"^(\s*---[\r\n]+)([\S\s]*?)([\r\n]+---(\r\n|\n|$))")
class RepoCard:
card_data_class = CardData
default_template_path = TEMPLATE_MODELCARD_PATH
repo_type = "model"
def __init__(self, content: str, ignore_metadata_errors: bool = False):
"""Initialize a RepoCard from string content. The content should be a
Markdown file with a YAML block at the beginning and a Markdown body.
Args:
content (`str`): The content of the Markdown file.
Example:
```python
>>> from huggingface_hub.repocard import RepoCard
>>> text = '''
... ---
... language: en
... license: mit
... ---
...
... # My repo
... '''
>>> card = RepoCard(text)
>>> card.data.to_dict()
{'language': 'en', 'license': 'mit'}
>>> card.text
'\\n# My repo\\n'
```
<Tip>
Raises the following error:
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
when the content of the repo card metadata is not a dictionary.
</Tip>
"""
# Set the content of the RepoCard, as well as underlying .data and .text attributes.
# See the `content` property setter for more details.
self.ignore_metadata_errors = ignore_metadata_errors
self.content = content
@property
def content(self):
"""The content of the RepoCard, including the YAML block and the Markdown body."""
line_break = _detect_line_ending(self._content) or "\n"
return f"---{line_break}{self.data.to_yaml(line_break=line_break, original_order=self._original_order)}{line_break}---{line_break}{self.text}"
@content.setter
def content(self, content: str):
"""Set the content of the RepoCard."""
self._content = content
match = REGEX_YAML_BLOCK.search(content)
if match:
# Metadata found in the YAML block
yaml_block = match.group(2)
self.text = content[match.end() :]
data_dict = yaml.safe_load(yaml_block)
if data_dict is None:
data_dict = {}
# The YAML block's data should be a dictionary
if not isinstance(data_dict, dict):
raise ValueError("repo card metadata block should be a dict")
else:
# Model card without metadata... create empty metadata
logger.warning("Repo card metadata block was not found. Setting CardData to empty.")
data_dict = {}
self.text = content
self.data = self.card_data_class(**data_dict, ignore_metadata_errors=self.ignore_metadata_errors)
self._original_order = list(data_dict.keys())
def __str__(self):
return self.content
def save(self, filepath: Union[Path, str]):
r"""Save a RepoCard to a file.
Args:
filepath (`Union[Path, str]`): Filepath to the markdown file to save.
Example:
```python
>>> from huggingface_hub.repocard import RepoCard
>>> card = RepoCard("---\nlanguage: en\n---\n# This is a test repo card")
>>> card.save("/tmp/test.md")
```
"""
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
# Preserve newlines as in the existing file.
with open(filepath, mode="w", newline="", encoding="utf-8") as f:
f.write(str(self))
@classmethod
def load(
cls,
repo_id_or_path: Union[str, Path],
repo_type: Optional[str] = None,
token: Optional[str] = None,
ignore_metadata_errors: bool = False,
):
"""Initialize a RepoCard from a Hugging Face Hub repo's README.md or a local filepath.
Args:
repo_id_or_path (`Union[str, Path]`):
The repo ID associated with a Hugging Face Hub repo or a local filepath.
repo_type (`str`, *optional*):
The type of Hugging Face repo to push to. Defaults to None, which will use use "model". Other options
are "dataset" and "space". Not used when loading from a local filepath. If this is called from a child
class, the default value will be the child class's `repo_type`.
token (`str`, *optional*):
Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
Returns:
[`huggingface_hub.repocard.RepoCard`]: The RepoCard (or subclass) initialized from the repo's
README.md file or filepath.
Example:
```python
>>> from huggingface_hub.repocard import RepoCard
>>> card = RepoCard.load("nateraw/food")
>>> assert card.data.tags == ["generated_from_trainer", "image-classification", "pytorch"]
```
"""
if Path(repo_id_or_path).exists():
card_path = Path(repo_id_or_path)
elif isinstance(repo_id_or_path, str):
card_path = Path(
hf_hub_download(
repo_id_or_path,
constants.REPOCARD_NAME,
repo_type=repo_type or cls.repo_type,
token=token,
)
)
else:
raise ValueError(f"Cannot load RepoCard: path not found on disk ({repo_id_or_path}).")
# Preserve newlines in the existing file.
with card_path.open(mode="r", newline="", encoding="utf-8") as f:
return cls(f.read(), ignore_metadata_errors=ignore_metadata_errors)
def validate(self, repo_type: Optional[str] = None):
"""Validates card against Hugging Face Hub's card validation logic.
Using this function requires access to the internet, so it is only called
internally by [`huggingface_hub.repocard.RepoCard.push_to_hub`].
Args:
repo_type (`str`, *optional*, defaults to "model"):
The type of Hugging Face repo to push to. Options are "model", "dataset", and "space".
If this function is called from a child class, the default will be the child class's `repo_type`.
<Tip>
Raises the following errors:
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if the card fails validation checks.
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the request to the Hub API fails for any other reason.
</Tip>
"""
# If repo type is provided, otherwise, use the repo type of the card.
repo_type = repo_type or self.repo_type
body = {
"repoType": repo_type,
"content": str(self),
}
headers = {"Accept": "text/plain"}
try:
r = get_session().post("https://huggingface.co/api/validate-yaml", body, headers=headers)
r.raise_for_status()
except requests.exceptions.HTTPError as exc:
if r.status_code == 400:
raise ValueError(r.text)
else:
raise exc
def push_to_hub(
self,
repo_id: str,
token: Optional[str] = None,
repo_type: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
):
"""Push a RepoCard to a Hugging Face Hub repo.
Args:
repo_id (`str`):
The repo ID of the Hugging Face Hub repo to push to. Example: "nateraw/food".
token (`str`, *optional*):
Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to
the stored token.
repo_type (`str`, *optional*, defaults to "model"):
The type of Hugging Face repo to push to. Options are "model", "dataset", and "space". If this
function is called by a child class, it will default to the child class's `repo_type`.
commit_message (`str`, *optional*):
The summary / title / first line of the generated commit.
commit_description (`str`, *optional*)
The description of the generated commit.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
create_pr (`bool`, *optional*):
Whether or not to create a Pull Request with this commit. Defaults to `False`.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.
If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`.
If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`.
Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be
especially useful if the repo is updated / committed to concurrently.
Returns:
`str`: URL of the commit which updated the card metadata.
"""
# If repo type is provided, otherwise, use the repo type of the card.
repo_type = repo_type or self.repo_type
# Validate card before pushing to hub
self.validate(repo_type=repo_type)
with SoftTemporaryDirectory() as tmpdir:
tmp_path = Path(tmpdir) / constants.REPOCARD_NAME
tmp_path.write_text(str(self))
url = upload_file(
path_or_fileobj=str(tmp_path),
path_in_repo=constants.REPOCARD_NAME,
repo_id=repo_id,
token=token,
repo_type=repo_type,
commit_message=commit_message,
commit_description=commit_description,
create_pr=create_pr,
revision=revision,
parent_commit=parent_commit,
)
return url
@classmethod
def from_template(
cls,
card_data: CardData,
template_path: Optional[str] = None,
template_str: Optional[str] = None,
**template_kwargs,
):
"""Initialize a RepoCard from a template. By default, it uses the default template.
Templates are Jinja2 templates that can be customized by passing keyword arguments.
Args:
card_data (`huggingface_hub.CardData`):
A huggingface_hub.CardData instance containing the metadata you want to include in the YAML
header of the repo card on the Hugging Face Hub.
template_path (`str`, *optional*):
A path to a markdown file with optional Jinja template variables that can be filled
in with `template_kwargs`. Defaults to the default template.
Returns:
[`huggingface_hub.repocard.RepoCard`]: A RepoCard instance with the specified card data and content from the
template.
"""
if is_jinja_available():
import jinja2
else:
raise ImportError(
"Using RepoCard.from_template requires Jinja2 to be installed. Please"
" install it with `pip install Jinja2`."
)
kwargs = card_data.to_dict().copy()
kwargs.update(template_kwargs) # Template_kwargs have priority
if template_path is not None:
template_str = Path(template_path).read_text()
if template_str is None:
template_str = Path(cls.default_template_path).read_text()
template = jinja2.Template(template_str)
content = template.render(card_data=card_data.to_yaml(), **kwargs)
return cls(content)
class ModelCard(RepoCard):
card_data_class = ModelCardData
default_template_path = TEMPLATE_MODELCARD_PATH
repo_type = "model"
@classmethod
def from_template( # type: ignore # violates Liskov property but easier to use
cls,
card_data: ModelCardData,
template_path: Optional[str] = None,
template_str: Optional[str] = None,
**template_kwargs,
):
"""Initialize a ModelCard from a template. By default, it uses the default template, which can be found here:
https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md
Templates are Jinja2 templates that can be customized by passing keyword arguments.
Args:
card_data (`huggingface_hub.ModelCardData`):
A huggingface_hub.ModelCardData instance containing the metadata you want to include in the YAML
header of the model card on the Hugging Face Hub.
template_path (`str`, *optional*):
A path to a markdown file with optional Jinja template variables that can be filled
in with `template_kwargs`. Defaults to the default template.
Returns:
[`huggingface_hub.ModelCard`]: A ModelCard instance with the specified card data and content from the
template.
Example:
```python
>>> from huggingface_hub import ModelCard, ModelCardData, EvalResult
>>> # Using the Default Template
>>> card_data = ModelCardData(
... language='en',
... license='mit',
... library_name='timm',
... tags=['image-classification', 'resnet'],
... datasets=['beans'],
... metrics=['accuracy'],
... )
>>> card = ModelCard.from_template(
... card_data,
... model_description='This model does x + y...'
... )
>>> # Including Evaluation Results
>>> card_data = ModelCardData(
... language='en',
... tags=['image-classification', 'resnet'],
... eval_results=[
... EvalResult(
... task_type='image-classification',
... dataset_type='beans',
... dataset_name='Beans',
... metric_type='accuracy',
... metric_value=0.9,
... ),
... ],
... model_name='my-cool-model',
... )
>>> card = ModelCard.from_template(card_data)
>>> # Using a Custom Template
>>> card_data = ModelCardData(
... language='en',
... tags=['image-classification', 'resnet']
... )
>>> card = ModelCard.from_template(
... card_data=card_data,
... template_path='./src/huggingface_hub/templates/modelcard_template.md',
... custom_template_var='custom value', # will be replaced in template if it exists
... )
```
"""
return super().from_template(card_data, template_path, template_str, **template_kwargs)
class DatasetCard(RepoCard):
card_data_class = DatasetCardData
default_template_path = TEMPLATE_DATASETCARD_PATH
repo_type = "dataset"
@classmethod
def from_template( # type: ignore # violates Liskov property but easier to use
cls,
card_data: DatasetCardData,
template_path: Optional[str] = None,
template_str: Optional[str] = None,
**template_kwargs,
):
"""Initialize a DatasetCard from a template. By default, it uses the default template, which can be found here:
https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md
Templates are Jinja2 templates that can be customized by passing keyword arguments.
Args:
card_data (`huggingface_hub.DatasetCardData`):
A huggingface_hub.DatasetCardData instance containing the metadata you want to include in the YAML
header of the dataset card on the Hugging Face Hub.
template_path (`str`, *optional*):
A path to a markdown file with optional Jinja template variables that can be filled
in with `template_kwargs`. Defaults to the default template.
Returns:
[`huggingface_hub.DatasetCard`]: A DatasetCard instance with the specified card data and content from the
template.
Example:
```python
>>> from huggingface_hub import DatasetCard, DatasetCardData
>>> # Using the Default Template
>>> card_data = DatasetCardData(
... language='en',
... license='mit',
... annotations_creators='crowdsourced',
... task_categories=['text-classification'],
... task_ids=['sentiment-classification', 'text-scoring'],
... multilinguality='monolingual',
... pretty_name='My Text Classification Dataset',
... )
>>> card = DatasetCard.from_template(
... card_data,
... pretty_name=card_data.pretty_name,
... )
>>> # Using a Custom Template
>>> card_data = DatasetCardData(
... language='en',
... license='mit',
... )
>>> card = DatasetCard.from_template(
... card_data=card_data,
... template_path='./src/huggingface_hub/templates/datasetcard_template.md',
... custom_template_var='custom value', # will be replaced in template if it exists
... )
```
"""
return super().from_template(card_data, template_path, template_str, **template_kwargs)
class SpaceCard(RepoCard):
card_data_class = SpaceCardData
default_template_path = TEMPLATE_MODELCARD_PATH
repo_type = "space"
def _detect_line_ending(content: str) -> Literal["\r", "\n", "\r\n", None]: # noqa: F722
"""Detect the line ending of a string. Used by RepoCard to avoid making huge diff on newlines.
Uses same implementation as in Hub server, keep it in sync.
Returns:
str: The detected line ending of the string.
"""
cr = content.count("\r")
lf = content.count("\n")
crlf = content.count("\r\n")
if cr + lf == 0:
return None
if crlf == cr and crlf == lf:
return "\r\n"
if cr > lf:
return "\r"
else:
return "\n"
def metadata_load(local_path: Union[str, Path]) -> Optional[Dict]:
content = Path(local_path).read_text()
match = REGEX_YAML_BLOCK.search(content)
if match:
yaml_block = match.group(2)
data = yaml.safe_load(yaml_block)
if data is None or isinstance(data, dict):
return data
raise ValueError("repo card metadata block should be a dict")
else:
return None
def metadata_save(local_path: Union[str, Path], data: Dict) -> None:
"""
Save the metadata dict in the upper YAML part Trying to preserve newlines as
in the existing file. Docs about open() with newline="" parameter:
https://docs.python.org/3/library/functions.html?highlight=open#open Does
not work with "^M" linebreaks, which are replaced by \n
"""
line_break = "\n"
content = ""
# try to detect existing newline character
if os.path.exists(local_path):
with open(local_path, "r", newline="", encoding="utf8") as readme:
content = readme.read()
if isinstance(readme.newlines, tuple):
line_break = readme.newlines[0]
elif isinstance(readme.newlines, str):
line_break = readme.newlines
# creates a new file if it not
with open(local_path, "w", newline="", encoding="utf8") as readme:
data_yaml = yaml_dump(data, sort_keys=False, line_break=line_break)
# sort_keys: keep dict order
match = REGEX_YAML_BLOCK.search(content)
if match:
output = content[: match.start()] + f"---{line_break}{data_yaml}---{line_break}" + content[match.end() :]
else:
output = f"---{line_break}{data_yaml}---{line_break}{content}"
readme.write(output)
readme.close()
def metadata_eval_result(
*,
model_pretty_name: str,
task_pretty_name: str,
task_id: str,
metrics_pretty_name: str,
metrics_id: str,
metrics_value: Any,
dataset_pretty_name: str,
dataset_id: str,
metrics_config: Optional[str] = None,
metrics_verified: bool = False,
dataset_config: Optional[str] = None,
dataset_split: Optional[str] = None,
dataset_revision: Optional[str] = None,
metrics_verification_token: Optional[str] = None,
) -> Dict:
"""
Creates a metadata dict with the result from a model evaluated on a dataset.
Args:
model_pretty_name (`str`):
The name of the model in natural language.
task_pretty_name (`str`):
The name of a task in natural language.
task_id (`str`):
Example: automatic-speech-recognition. A task id.
metrics_pretty_name (`str`):
A name for the metric in natural language. Example: Test WER.
metrics_id (`str`):
Example: wer. A metric id from https://hf.co/metrics.
metrics_value (`Any`):
The value from the metric. Example: 20.0 or "20.0 ± 1.2".
dataset_pretty_name (`str`):
The name of the dataset in natural language.
dataset_id (`str`):
Example: common_voice. A dataset id from https://hf.co/datasets.
metrics_config (`str`, *optional*):
The name of the metric configuration used in `load_metric()`.
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
metrics_verified (`bool`, *optional*, defaults to `False`):
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
dataset_config (`str`, *optional*):
Example: fr. The name of the dataset configuration used in `load_dataset()`.
dataset_split (`str`, *optional*):
Example: test. The name of the dataset split used in `load_dataset()`.
dataset_revision (`str`, *optional*):
Example: 5503434ddd753f426f4b38109466949a1217c2bb. The name of the dataset dataset revision
used in `load_dataset()`.
metrics_verification_token (`bool`, *optional*):
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
Returns:
`dict`: a metadata dict with the result from a model evaluated on a dataset.
Example:
```python
>>> from huggingface_hub import metadata_eval_result
>>> results = metadata_eval_result(
... model_pretty_name="RoBERTa fine-tuned on ReactionGIF",
... task_pretty_name="Text Classification",
... task_id="text-classification",
... metrics_pretty_name="Accuracy",
... metrics_id="accuracy",
... metrics_value=0.2662102282047272,
... dataset_pretty_name="ReactionJPEG",
... dataset_id="julien-c/reactionjpeg",
... dataset_config="default",
... dataset_split="test",
... )
>>> results == {
... 'model-index': [
... {
... 'name': 'RoBERTa fine-tuned on ReactionGIF',
... 'results': [
... {
... 'task': {
... 'type': 'text-classification',
... 'name': 'Text Classification'
... },
... 'dataset': {
... 'name': 'ReactionJPEG',
... 'type': 'julien-c/reactionjpeg',
... 'config': 'default',
... 'split': 'test'
... },
... 'metrics': [
... {
... 'type': 'accuracy',
... 'value': 0.2662102282047272,
... 'name': 'Accuracy',
... 'verified': False
... }
... ]
... }
... ]
... }
... ]
... }
True
```
"""
return {
"model-index": eval_results_to_model_index(
model_name=model_pretty_name,
eval_results=[
EvalResult(
task_name=task_pretty_name,
task_type=task_id,
metric_name=metrics_pretty_name,
metric_type=metrics_id,
metric_value=metrics_value,
dataset_name=dataset_pretty_name,
dataset_type=dataset_id,
metric_config=metrics_config,
verified=metrics_verified,
verify_token=metrics_verification_token,
dataset_config=dataset_config,
dataset_split=dataset_split,
dataset_revision=dataset_revision,
)
],
)
}
@validate_hf_hub_args
def metadata_update(
repo_id: str,
metadata: Dict,
*,
repo_type: Optional[str] = None,
overwrite: bool = False,
token: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
revision: Optional[str] = None,
create_pr: bool = False,
parent_commit: Optional[str] = None,
) -> str:
"""
Updates the metadata in the README.md of a repository on the Hugging Face Hub.
If the README.md file doesn't exist yet, a new one is created with metadata and an
the default ModelCard or DatasetCard template. For `space` repo, an error is thrown
as a Space cannot exist without a `README.md` file.
Args:
repo_id (`str`):
The name of the repository.
metadata (`dict`):
A dictionary containing the metadata to be updated.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if updating to a dataset or space,
`None` or `"model"` if updating to a model. Default is `None`.
overwrite (`bool`, *optional*, defaults to `False`):
If set to `True` an existing field can be overwritten, otherwise
attempting to overwrite an existing field will cause an error.
token (`str`, *optional*):
The Hugging Face authentication token.
commit_message (`str`, *optional*):
The summary / title / first line of the generated commit. Defaults to
`f"Update metadata with huggingface_hub"`
commit_description (`str` *optional*)
The description of the generated commit
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the
`"main"` branch.
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request from `revision` with that commit.
Defaults to `False`.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.
If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`.
If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`.
Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be
especially useful if the repo is updated / committed to concurrently.
Returns:
`str`: URL of the commit which updated the card metadata.
Example:
```python
>>> from huggingface_hub import metadata_update
>>> metadata = {'model-index': [{'name': 'RoBERTa fine-tuned on ReactionGIF',
... 'results': [{'dataset': {'name': 'ReactionGIF',
... 'type': 'julien-c/reactiongif'},
... 'metrics': [{'name': 'Recall',
... 'type': 'recall',
... 'value': 0.7762102282047272}],
... 'task': {'name': 'Text Classification',
... 'type': 'text-classification'}}]}]}
>>> url = metadata_update("hf-internal-testing/reactiongif-roberta-card", metadata)
```
"""
commit_message = commit_message if commit_message is not None else "Update metadata with huggingface_hub"
# Card class given repo_type
card_class: Type[RepoCard]
if repo_type is None or repo_type == "model":
card_class = ModelCard
elif repo_type == "dataset":
card_class = DatasetCard
elif repo_type == "space":
card_class = RepoCard
else:
raise ValueError(f"Unknown repo_type: {repo_type}")
# Either load repo_card from the Hub or create an empty one.
# NOTE: Will not create the repo if it doesn't exist.
try:
card = card_class.load(repo_id, token=token, repo_type=repo_type)
except EntryNotFoundError:
if repo_type == "space":
raise ValueError("Cannot update metadata on a Space that doesn't contain a `README.md` file.")
# Initialize a ModelCard or DatasetCard from default template and no data.
card = card_class.from_template(CardData())
for key, value in metadata.items():
if key == "model-index":
# if the new metadata doesn't include a name, either use existing one or repo name
if "name" not in value[0]:
value[0]["name"] = getattr(card, "model_name", repo_id)
model_name, new_results = model_index_to_eval_results(value)
if card.data.eval_results is None:
card.data.eval_results = new_results
card.data.model_name = model_name
else:
existing_results = card.data.eval_results
# Iterate over new results
# Iterate over existing results
# If both results describe the same metric but value is different:
# If overwrite=True: overwrite the metric value
# Else: raise ValueError
# Else: append new result to existing ones.
for new_result in new_results:
result_found = False
for existing_result in existing_results:
if new_result.is_equal_except_value(existing_result):
if new_result != existing_result and not overwrite:
raise ValueError(
"You passed a new value for the existing metric"
f" 'name: {new_result.metric_name}, type: "
f"{new_result.metric_type}'. Set `overwrite=True`"
" to overwrite existing metrics."
)
result_found = True
existing_result.metric_value = new_result.metric_value
if existing_result.verified is True:
existing_result.verify_token = new_result.verify_token
if not result_found:
card.data.eval_results.append(new_result)
else:
# Any metadata that is not a result metric
if card.data.get(key) is not None and not overwrite and card.data.get(key) != value:
raise ValueError(
f"You passed a new value for the existing meta data field '{key}'."
" Set `overwrite=True` to overwrite existing metadata."
)
else:
card.data[key] = value
return card.push_to_hub(
repo_id,
token=token,
repo_type=repo_type,
commit_message=commit_message,
commit_description=commit_description,
create_pr=create_pr,
revision=revision,
parent_commit=parent_commit,
)
|