File size: 8,893 Bytes
63ecb0d
 
 
 
d23f574
cf5f1c9
 
ae0ed1b
63ecb0d
 
144c78b
 
04ae3b4
63ecb0d
04ae3b4
4f95b2f
04ae3b4
144c78b
 
63ecb0d
 
04ae3b4
144c78b
04ae3b4
63ecb0d
 
4f95b2f
ae0ed1b
63ecb0d
4f95b2f
 
 
 
 
04ae3b4
4f95b2f
 
 
63ecb0d
ae0ed1b
66791b6
63ecb0d
144c78b
63ecb0d
 
147a645
 
63ecb0d
144c78b
 
 
 
 
 
 
 
147a645
4f95b2f
144c78b
147a645
 
66791b6
 
 
144c78b
 
 
4f95b2f
04ae3b4
4f95b2f
 
144c78b
63ecb0d
144c78b
 
 
 
 
 
 
 
63ecb0d
4f95b2f
 
ae0ed1b
 
04ae3b4
cf5f1c9
04ae3b4
cf5f1c9
ae0ed1b
04ae3b4
4f95b2f
04ae3b4
cf5f1c9
04ae3b4
 
 
 
cf5f1c9
 
 
 
 
6113bd9
 
 
 
 
 
 
 
 
cf5f1c9
 
5f10ef2
04ae3b4
cf5f1c9
 
 
 
 
 
 
5f10ef2
 
 
b2ca465
5f10ef2
 
 
63ecb0d
144c78b
4f95b2f
 
 
a33eef8
5a7c441
66791b6
cf5f1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66791b6
cf5f1c9
 
 
 
 
 
63ecb0d
ce7a58b
ae0ed1b
04ae3b4
ae0ed1b
 
 
 
7511df3
 
ae0ed1b
 
147a645
ae0ed1b
cf5f1c9
ce7a58b
04ae3b4
ae0ed1b
 
04ae3b4
ae0ed1b
 
 
 
 
 
 
 
 
ce7a58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf5f1c9
63ecb0d
7baae45
cf5f1c9
7baae45
144c78b
 
4f95b2f
 
144c78b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import openai
from pytube import YouTube
import argparse
import os
from tqdm import tqdm
from SRT import SRT_script
import stable_whisper

parser = argparse.ArgumentParser()
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
parser.add_argument("--video_file", help="local video path here", default=None, type=str, required=False)
parser.add_argument("--audio_file", help="local audio path here", default=None, type=str, required=False)
parser.add_argument("--srt_file", help="srt file input path here", default=None, type=str, required=False)  # New argument
parser.add_argument("--download", help="download path", default='./downloads', type=str, required=False)
parser.add_argument("--output_dir", help="translate result path", default='./results', type=str, required=False)
parser.add_argument("--video_name", help="video name, if use video link as input, the name will auto-filled by youtube video name", default='placeholder', type=str, required=False)
parser.add_argument("--model_name", help="model name only support text-davinci-003 and gpt-3.5-turbo", type=str, required=False, default="gpt-3.5-turbo")
parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
parser.add_argument("-v", help="auto encode script with video", action='store_true')
args = parser.parse_args()

# input should be either video file or youtube video link.
if args.link is None and args.video_file is None and args.srt_file is None:
    print("need video source or srt file")
    exit()

# set up
openai.api_key = os.getenv("OPENAI_API_KEY")
DOWNLOAD_PATH = args.download
if not os.path.exists(DOWNLOAD_PATH):
    os.mkdir(DOWNLOAD_PATH)
    os.mkdir(f'{DOWNLOAD_PATH}/audio')
    os.mkdir(f'{DOWNLOAD_PATH}/video')

RESULT_PATH = args.output_dir
if not os.path.exists(RESULT_PATH):
    os.mkdir(RESULT_PATH)

VIDEO_NAME = args.video_name
model_name = args.model_name

# get source audio
if args.link is not None and args.video_file is None:
    # Download audio from YouTube
    video_link = args.link
    video = None
    audio = None
    try:
        yt = YouTube(video_link)
        video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
        if video:
            video.download(f'{DOWNLOAD_PATH}/video')
            print('Video download completed!')
        else:
            print("Error: Video stream not found")
        audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
        if audio:
            audio.download(f'{DOWNLOAD_PATH}/audio')
            print('Audio download completed!')
        else:
            print("Error: Audio stream not found")
    except Exception as e:
        print("Connection Error")
        print(e) 
        exit()
    
    video_path = f'{DOWNLOAD_PATH}/video/{video.default_filename}'
    audio_path = '{}/audio/{}'.format(DOWNLOAD_PATH, audio.default_filename)
    audio_file = open(audio_path, "rb")
    if VIDEO_NAME == 'placeholder':
        VIDEO_NAME = audio.default_filename.split('.')[0]
elif args.video_file is not None:
    # Read from local
    video_path = args.video_file
    if args.audio_file is not None:
        audio_file= open(args.audio_file, "rb")
        audio_path = args.audio_file
    else:
        os.system(f'ffmpeg -i {args.video_file} -f mp3 -ab 192000 -vn {DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3')
        audio_file= open(f'{DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3', "rb")
        audio_path = f'{DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3'

if not os.path.exists(f'{RESULT_PATH}/{VIDEO_NAME}'):
    os.mkdir(f'{RESULT_PATH}/{VIDEO_NAME}')

# Instead of using the script_en variable directly, we'll use script_input
srt_file_en = args.srt_file 

if srt_file_en is not None: 
    srt = SRT_script.parse_from_srt_file(srt_file_en)
else:
    # using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
    srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
    if not os.path.exists(srt_file_en):

        # use OpenAI API for transcribe
        # transcript = openai.Audio.transcribe("whisper-1", audio_file) 

        # use local whisper model 
        # model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
        # transcript = model.transcribe(audio_path)

        # use stable-whisper
        model = stable_whisper.load_model('base')
        transcript = model.transcribe(audio_path, regroup = False)
        (
            transcript
            .split_by_punctuation(['.', '。', '?'])
            .merge_by_gap(.15, max_words=3)
            .merge_by_punctuation([' '])
            .split_by_punctuation(['.', '。', '?'])
        )
        # transcript.to_srt_vtt(srt_file_en)
        transcript = transcript.to_dict()
        srt = SRT_script(transcript['segments']) # read segments to SRT class

        #Write SRT file
        
        # from whisper.utils import WriteSRT
        # with open(srt_file_en, 'w', encoding="utf-8") as f:
        #     writer = WriteSRT(RESULT_PATH)
        #     writer.write_result(transcript, f)
    else:
        srt = SRT_script.parse_from_srt_file(srt_file_en)

# srt preprocess
srt.form_whole_sentence()
srt.spell_check_term()
srt.correct_with_force_term()
srt.write_srt_file_src(srt_file_en)
script_input = srt.get_source_only()

if not args.only_srt:
    from srt2ass import srt2ass
    assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
    print('ASS subtitle saved as: ' + assSub_en)


# Split the video script by sentences and create chunks within the token limit
def script_split(script_in, chunk_size = 1000):
    script_split = script_in.split('\n\n')
    script_arr = []
    range_arr = []
    start = 1
    end = 0
    script = ""
    for sentence in script_split:
        if len(script) + len(sentence) + 1 <= chunk_size:
            script += sentence + '\n\n'
            end+=1
        else:
            range_arr.append((start, end))
            start = end+1
            end += 1
            script_arr.append(script.strip())
            script = sentence + '\n\n'
    if script.strip():
        script_arr.append(script.strip())
        range_arr.append((start, len(script_split)-1))

    assert len(script_arr) == len(range_arr)
    return script_arr, range_arr

script_arr, range_arr = script_split(script_input)

def get_response(model_name):
    if model_name == "gpt-3.5-turbo":
        # print(s + "\n")
        response = openai.ChatCompletion.create(
            model=model_name,
            messages = [
                {"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
                {"role": "system", "content": "Your translation has to keep the orginal format and be as accurate as possible."},
                {"role": "system", "content": "There is no need for you to add any comments or notes."},
                {"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(s)}
            ],
            temperature=0.15
        )

        return response['choices'][0]['message']['content'].strip()

    if model_name == "text-davinci-003":
        prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
        # print(prompt)
        response = openai.Completion.create(
            model=model_name,
            prompt=prompt,
            temperature=0.1,
            max_tokens=2000,
            top_p=1.0,
            frequency_penalty=0.0,
            presence_penalty=0.0
        )
        return response['choices'][0]['text'].strip()
    pass
        
        
# Translate and save
for s, range in tqdm(zip(script_arr, range_arr)):
    # using chatgpt model
    print(f"now translating sentences {range}")
    flag = True
    while flag:
        flag = False
        try:
            translate = get_response(model_name)
        except Exception as e:
            print("An error has occurred during translation:",e)
            print("Retrying...")
            flag = True
    srt.set_translation(translate, range)

srt.check_len_and_split()
srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
srt.write_srt_file_bilingual(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_bi.srt")

if not args.only_srt:
    assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
    print('ASS subtitle saved as: ' + assSub_zh)

if args.v:
    if args.only_srt:
        os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
    else:
        os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.ass" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')