File size: 34,905 Bytes
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5a71d2
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# More information and citation instructions are available on the
# --------------------------------------------------------------------------
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection


from diffusers.image_processor import PipelineImageInput
from diffusers.models import (
    AutoencoderKL,
    UNet2DConditionModel,
	ControlNetModel,
)
from diffusers.schedulers import (
	DDIMScheduler
)

from diffusers.utils import (
    BaseOutput,
    logging,
    replace_example_docstring,
)


from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.controlnet import StableDiffusionControlNetPipeline
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

import pdb



logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import diffusers
>>> import torch

>>> pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
...     "prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
... ).to("cuda")

>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
>>> normals = pipe(image)

>>> vis = pipe.image_processor.visualize_normals(normals.prediction)
>>> vis[0].save("einstein_normals.png")
```
"""


@dataclass
class YosoNormalsOutput(BaseOutput):
    """
    Output class for Marigold monocular normals prediction pipeline.

    Args:
        prediction (`np.ndarray`, `torch.Tensor`):
            Predicted normals with values in the range [-1, 1]. The shape is always $numimages \times 3 \times height
            \times width$, regardless of whether the images were passed as a 4D array or a list.
        uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
            Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
            \times 1 \times height \times width$.
        latent (`None`, `torch.Tensor`):
            Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
            The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
    """

    prediction: Union[np.ndarray, torch.Tensor]
    latent: Union[None, torch.Tensor]
    gaus_noise: Union[None, torch.Tensor]


class YOSONormalsPipeline(StableDiffusionControlNetPipeline):
    """ Pipeline for monocular normals estimation using the Marigold method: https://marigoldmonodepth.github.io.
    Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]



    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel]],
        scheduler: Union[DDIMScheduler],
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
        default_denoising_steps: Optional[int] = 1,
		default_processing_resolution: Optional[int] = 768,
        prompt="",
        empty_text_embedding=None,
        t_start: Optional[int] = 401,
    ):
        super().__init__(
            vae,
            text_encoder,
            tokenizer,
            unet,
            controlnet,
            scheduler,
            safety_checker,
            feature_extractor,
            image_encoder,
            requires_safety_checker,
                )

        # TODO yoso ImageProcessor
        self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.control_image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.default_denoising_steps = default_denoising_steps
        self.default_processing_resolution = default_processing_resolution
        self.prompt = prompt
        self.prompt_embeds = None
        self.empty_text_embedding = empty_text_embedding
        self.t_start= t_start # target_out latents

    def check_inputs(
        self,
        image: PipelineImageInput,
        num_inference_steps: int,
        ensemble_size: int,
        processing_resolution: int,
        resample_method_input: str,
        resample_method_output: str,
        batch_size: int,
        ensembling_kwargs: Optional[Dict[str, Any]],
        latents: Optional[torch.Tensor],
        generator: Optional[Union[torch.Generator, List[torch.Generator]]],
        output_type: str,
        output_uncertainty: bool,
    ) -> int:
        if num_inference_steps is None:
            raise ValueError("`num_inference_steps` is not specified and could not be resolved from the model config.")
        if num_inference_steps < 1:
            raise ValueError("`num_inference_steps` must be positive.")
        if ensemble_size < 1:
            raise ValueError("`ensemble_size` must be positive.")
        if ensemble_size == 2:
            logger.warning(
                "`ensemble_size` == 2 results are similar to no ensembling (1); "
                "consider increasing the value to at least 3."
            )
        if ensemble_size == 1 and output_uncertainty:
            raise ValueError(
                "Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` "
                "greater than 1."
            )
        if processing_resolution is None:
            raise ValueError(
                "`processing_resolution` is not specified and could not be resolved from the model config."
            )
        if processing_resolution < 0:
            raise ValueError(
                "`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
                "downsampled processing."
            )
        if processing_resolution % self.vae_scale_factor != 0:
            raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
        if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
            raise ValueError(
                "`resample_method_input` takes string values compatible with PIL library: "
                "nearest, nearest-exact, bilinear, bicubic, area."
            )
        if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
            raise ValueError(
                "`resample_method_output` takes string values compatible with PIL library: "
                "nearest, nearest-exact, bilinear, bicubic, area."
            )
        if batch_size < 1:
            raise ValueError("`batch_size` must be positive.")
        if output_type not in ["pt", "np"]:
            raise ValueError("`output_type` must be one of `pt` or `np`.")
        if latents is not None and generator is not None:
            raise ValueError("`latents` and `generator` cannot be used together.")
        if ensembling_kwargs is not None:
            if not isinstance(ensembling_kwargs, dict):
                raise ValueError("`ensembling_kwargs` must be a dictionary.")
            if "reduction" in ensembling_kwargs and ensembling_kwargs["reduction"] not in ("closest", "mean"):
                raise ValueError("`ensembling_kwargs['reduction']` can be either `'closest'` or `'mean'`.")

        # image checks
        num_images = 0
        W, H = None, None
        if not isinstance(image, list):
            image = [image]
        for i, img in enumerate(image):
            if isinstance(img, np.ndarray) or torch.is_tensor(img):
                if img.ndim not in (2, 3, 4):
                    raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
                H_i, W_i = img.shape[-2:]
                N_i = 1
                if img.ndim == 4:
                    N_i = img.shape[0]
            elif isinstance(img, Image.Image):
                W_i, H_i = img.size
                N_i = 1
            else:
                raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
            if W is None:
                W, H = W_i, H_i
            elif (W, H) != (W_i, H_i):
                raise ValueError(
                    f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
                )
            num_images += N_i

        # latents checks
        if latents is not None:
            if not torch.is_tensor(latents):
                raise ValueError("`latents` must be a torch.Tensor.")
            if latents.dim() != 4:
                raise ValueError(f"`latents` has unsupported dimensions or shape: {latents.shape}.")

            if processing_resolution > 0:
                max_orig = max(H, W)
                new_H = H * processing_resolution // max_orig
                new_W = W * processing_resolution // max_orig
                if new_H == 0 or new_W == 0:
                    raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]")
                W, H = new_W, new_H
            w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor
            h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor
            shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w)

            if latents.shape != shape_expected:
                raise ValueError(f"`latents` has unexpected shape={latents.shape} expected={shape_expected}.")

        # generator checks
        if generator is not None:
            if isinstance(generator, list):
                if len(generator) != num_images * ensemble_size:
                    raise ValueError(
                        "The number of generators must match the total number of ensemble members for all input images."
                    )
                if not all(g.device.type == generator[0].device.type for g in generator):
                    raise ValueError("`generator` device placement is not consistent in the list.")
            elif not isinstance(generator, torch.Generator):
                raise ValueError(f"Unsupported generator type: {type(generator)}.")

        return num_images

    def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        progress_bar_config = dict(**self._progress_bar_config)
        progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
        progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
        if iterable is not None:
            return tqdm(iterable, **progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_inference_steps: Optional[int] = None,
        ensemble_size: int = 1,
        processing_resolution: Optional[int] = None,
        match_input_resolution: bool = True,
        resample_method_input: str = "bilinear",
        resample_method_output: str = "bilinear",
        batch_size: int = 1,
        ensembling_kwargs: Optional[Dict[str, Any]] = None,
        latents: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        output_type: str = "np",
        output_uncertainty: bool = False,
        output_latent: bool = False,
        skip_preprocess: bool = False,
        return_dict: bool = True,
        **kwargs,
    ):
        """
        Function invoked when calling the pipeline.

        Args:
            image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
                `List[torch.Tensor]`: An input image or images used as an input for the normals estimation task. For
                arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
                by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
                three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
                same width and height.
            num_inference_steps (`int`, *optional*, defaults to `None`):
                Number of denoising diffusion steps during inference. The default value `None` results in automatic
                selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
                for Marigold-LCM models.
            ensemble_size (`int`, defaults to `1`):
                Number of ensemble predictions. Recommended values are 5 and higher for better precision, or 1 for
                faster inference.
            processing_resolution (`int`, *optional*, defaults to `None`):
                Effective processing resolution. When set to `0`, matches the larger input image dimension. This
                produces crisper predictions, but may also lead to the overall loss of global context. The default
                value `None` resolves to the optimal value from the model config.
            match_input_resolution (`bool`, *optional*, defaults to `True`):
                When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
                side of the output will equal to `processing_resolution`.
            resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
                Resampling method used to resize input images to `processing_resolution`. The accepted values are:
                `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
            resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
                Resampling method used to resize output predictions to match the input resolution. The accepted values
                are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
            batch_size (`int`, *optional*, defaults to `1`):
                Batch size; only matters when setting `ensemble_size` or passing a tensor of images.
            ensembling_kwargs (`dict`, *optional*, defaults to `None`)
                Extra dictionary with arguments for precise ensembling control. The following options are available:
                - reduction (`str`, *optional*, defaults to `"closest"`): Defines the ensembling function applied in
                  every pixel location, can be either `"closest"` or `"mean"`.
            latents (`torch.Tensor`, *optional*, defaults to `None`):
                Latent noise tensors to replace the random initialization. These can be taken from the previous
                function call's output.
            generator (`torch.Generator`, or `List[torch.Generator]`, *optional*, defaults to `None`):
                Random number generator object to ensure reproducibility.
            output_type (`str`, *optional*, defaults to `"np"`):
                Preferred format of the output's `prediction` and the optional `uncertainty` fields. The accepted
                values are: `"np"` (numpy array) or `"pt"` (torch tensor).
            output_uncertainty (`bool`, *optional*, defaults to `False`):
                When enabled, the output's `uncertainty` field contains the predictive uncertainty map, provided that
                the `ensemble_size` argument is set to a value above 2.
            output_latent (`bool`, *optional*, defaults to `False`):
                When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
                within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
                `latents` argument.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.marigold.MarigoldDepthOutput`] instead of a plain tuple.

        Examples:

        Returns:
            [`~pipelines.marigold.MarigoldNormalsOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.marigold.MarigoldNormalsOutput`] is returned, otherwise a
                `tuple` is returned where the first element is the prediction, the second element is the uncertainty
                (or `None`), and the third is the latent (or `None`).
        """

        # 0. Resolving variables.
        device = self._execution_device
        dtype = self.dtype

        # Model-specific optimal default values leading to fast and reasonable results.
        if num_inference_steps is None:
            num_inference_steps = self.default_denoising_steps
        if processing_resolution is None:
            processing_resolution = self.default_processing_resolution

        # 1. Check inputs.
        num_images = self.check_inputs(
            image,
            num_inference_steps,
            ensemble_size,
            processing_resolution,
            resample_method_input,
            resample_method_output,
            batch_size,
            ensembling_kwargs,
            latents,
            generator,
            output_type,
            output_uncertainty,
        )


        # 2. Prepare empty text conditioning.
        # Model invocation: self.tokenizer, self.text_encoder.
        if self.empty_text_embedding is None:
            prompt = ""
            text_inputs = self.tokenizer(
                prompt,
                padding="do_not_pad",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids.to(device)
            self.empty_text_embedding = self.text_encoder(text_input_ids)[0]  # [1,2,1024]



        # 3. prepare prompt
        if self.prompt_embeds is None:
            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                self.prompt,
                device,
                num_images_per_prompt,
                False,
                negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=None,
                lora_scale=None,
                clip_skip=None,
            )
            self.prompt_embeds = prompt_embeds
            self.negative_prompt_embeds = negative_prompt_embeds



        # 4. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`,
        # optionally downsamples them to the `processing_resolution` `(PH, PW)`, where
        # `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are
        # divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None`
        # of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of
        # operation and leads to the most reasonable results. Using the native image resolution or any other processing
        # resolution can lead to loss of either fine details or global context in the output predictions.
        if not skip_preprocess:
            image, padding, original_resolution = self.image_processor.preprocess(
                image, processing_resolution, resample_method_input, device, dtype
            )  # [N,3,PPH,PPW]
        else:
            padding = (0, 0)
            original_resolution = image.shape[2:]
        # 5. Encode input image into latent space. At this step, each of the `N` input images is represented with `E`
        # ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently.
        # Latents of each such predictions across all input images and all ensemble members are represented in the
        # `pred_latent` variable. The variable `image_latent` is of the same shape: it contains each input image encoded
        # into latent space and replicated `E` times. The latents can be either generated (see `generator` to ensure
        # reproducibility), or passed explicitly via the `latents` argument. The latter can be set outside the pipeline
        # code. For example, in the Marigold-LCM video processing demo, the latents initialization of a frame is taken
        # as a convex combination of the latents output of the pipeline for the previous frame and a newly-sampled
        # noise. This behavior can be achieved by setting the `output_latent` argument to `True`. The latent space
        # dimensions are `(h, w)`. Encoding into latent space happens in batches of size `batch_size`.
        # Model invocation: self.vae.encoder.
        image_latent, pred_latent = self.prepare_latents(
            image, latents, generator, ensemble_size, batch_size
        )  # [N*E,4,h,w], [N*E,4,h,w]

        gaus_noise = pred_latent.detach().clone()
        del image


        # 6. obtain control_output

        cond_scale =controlnet_conditioning_scale
        down_block_res_samples, mid_block_res_sample = self.controlnet(
            image_latent.detach(),
            self.t_start,
            encoder_hidden_states=self.prompt_embeds,
            conditioning_scale=cond_scale,
            guess_mode=False,
            return_dict=False,
        )

        # 7. YOSO sampling
        latent_x_t = self.unet(
            pred_latent,
            self.t_start,
            encoder_hidden_states=self.prompt_embeds,
            down_block_additional_residuals=down_block_res_samples,
            mid_block_additional_residual=mid_block_res_sample,
            return_dict=False,
        )[0]


        del (
            pred_latent,
            image_latent,
        )

        # decoder
        prediction = self.decode_prediction(latent_x_t)
        prediction = self.image_processor.unpad_image(prediction, padding)  # [N*E,3,PH,PW]

        prediction = self.image_processor.resize_antialias(
            prediction, original_resolution, resample_method_output, is_aa=False
        )  # [N,3,H,W]
        prediction = self.normalize_normals(prediction)  # [N,3,H,W]

        if output_type == "np":
            prediction = self.image_processor.pt_to_numpy(prediction)  # [N,H,W,3]

        # 11. Offload all models
        self.maybe_free_model_hooks()

        return YosoNormalsOutput(
            prediction=prediction,
            latent=latent_x_t,
            gaus_noise=gaus_noise,
        )

    # Copied from diffusers.pipelines.marigold.pipeline_marigold_depth.MarigoldDepthPipeline.prepare_latents
    def prepare_latents(
        self,
        image: torch.Tensor,
        latents: Optional[torch.Tensor],
        generator: Optional[torch.Generator],
        ensemble_size: int,
        batch_size: int,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        def retrieve_latents(encoder_output):
            if hasattr(encoder_output, "latent_dist"):
                return encoder_output.latent_dist.mode()
            elif hasattr(encoder_output, "latents"):
                return encoder_output.latents
            else:
                raise AttributeError("Could not access latents of provided encoder_output")



        image_latent = torch.cat(
            [
                retrieve_latents(self.vae.encode(image[i : i + batch_size]))
                for i in range(0, image.shape[0], batch_size)
            ],
            dim=0,
        )  # [N,4,h,w]
        image_latent = image_latent * self.vae.config.scaling_factor
        image_latent = image_latent.repeat_interleave(ensemble_size, dim=0)  # [N*E,4,h,w]

        pred_latent = torch.zeros_like(latents)
        if pred_latent is None:
            pred_latent = randn_tensor(
                image_latent.shape,
                generator=generator,
                device=image_latent.device,
                dtype=image_latent.dtype,
            )  # [N*E,4,h,w]

        return image_latent, pred_latent

    def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor:
        if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels:
            raise ValueError(
                f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}."
            )

        prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0]  # [B,3,H,W]

        prediction = self.normalize_normals(prediction)  # [B,3,H,W]

        return prediction  # [B,3,H,W]

    @staticmethod
    def normalize_normals(normals: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
        if normals.dim() != 4 or normals.shape[1] != 3:
            raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")

        norm = torch.norm(normals, dim=1, keepdim=True)
        normals /= norm.clamp(min=eps)

        return normals

    @staticmethod
    def ensemble_normals(
        normals: torch.Tensor, output_uncertainty: bool, reduction: str = "closest"
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Ensembles the normals maps represented by the `normals` tensor with expected shape `(B, 3, H, W)`, where B is
        the number of ensemble members for a given prediction of size `(H x W)`.

        Args:
            normals (`torch.Tensor`):
                Input ensemble normals maps.
            output_uncertainty (`bool`, *optional*, defaults to `False`):
                Whether to output uncertainty map.
            reduction (`str`, *optional*, defaults to `"closest"`):
                Reduction method used to ensemble aligned predictions. The accepted values are: `"closest"` and
                `"mean"`.

        Returns:
            A tensor of aligned and ensembled normals maps with shape `(1, 3, H, W)` and optionally a tensor of
            uncertainties of shape `(1, 1, H, W)`.
        """
        if normals.dim() != 4 or normals.shape[1] != 3:
            raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
        if reduction not in ("closest", "mean"):
            raise ValueError(f"Unrecognized reduction method: {reduction}.")

        mean_normals = normals.mean(dim=0, keepdim=True)  # [1,3,H,W]
        mean_normals = MarigoldNormalsPipeline.normalize_normals(mean_normals)  # [1,3,H,W]

        sim_cos = (mean_normals * normals).sum(dim=1, keepdim=True)  # [E,1,H,W]
        sim_cos = sim_cos.clamp(-1, 1)  # required to avoid NaN in uncertainty with fp16

        uncertainty = None
        if output_uncertainty:
            uncertainty = sim_cos.arccos()  # [E,1,H,W]
            uncertainty = uncertainty.mean(dim=0, keepdim=True) / np.pi  # [1,1,H,W]

        if reduction == "mean":
            return mean_normals, uncertainty  # [1,3,H,W], [1,1,H,W]

        closest_indices = sim_cos.argmax(dim=0, keepdim=True)  # [1,1,H,W]
        closest_indices = closest_indices.repeat(1, 3, 1, 1)  # [1,3,H,W]
        closest_normals = torch.gather(normals, 0, closest_indices)  # [1,3,H,W]

        return closest_normals, uncertainty  # [1,3,H,W], [1,1,H,W]

# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps