File size: 57,876 Bytes
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# More information and citation instructions are available on the
# --------------------------------------------------------------------------
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection


from diffusers.image_processor import PipelineImageInput
from diffusers.models import (
    AutoencoderKL,
    UNet2DConditionModel,
    ControlNetModel,
)
from diffusers.schedulers import (
    DDIMScheduler
)

from diffusers.utils import (
    BaseOutput,
    logging,
    replace_example_docstring,
)

from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput

from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers



from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.controlnet import StableDiffusionControlNetPipeline
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import torch.nn.functional as F

import pdb



logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import diffusers
>>> import torch

>>> pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
...     "prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
... ).to("cuda")

>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
>>> normals = pipe(image)

>>> vis = pipe.image_processor.visualize_normals(normals.prediction)
>>> vis[0].save("einstein_normals.png")
```
"""


@dataclass
class StableNormalOutput(BaseOutput):
    """
    Output class for Marigold monocular normals prediction pipeline.

    Args:
        prediction (`np.ndarray`, `torch.Tensor`):
            Predicted normals with values in the range [-1, 1]. The shape is always $numimages \times 3 \times height
            \times width$, regardless of whether the images were passed as a 4D array or a list.
        uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
            Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
            \times 1 \times height \times width$.
        latent (`None`, `torch.Tensor`):
            Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
            The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
    """

    prediction: Union[np.ndarray, torch.Tensor]
    latent: Union[None, torch.Tensor]
    gaus_noise: Union[None, torch.Tensor]

from einops import rearrange  
class DINOv2_Encoder(torch.nn.Module):
    IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
    IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]

    def __init__(
        self,
        model_name = 'dinov2_vitl14',
        freeze = True,
        antialias=True,
        device="cuda",
        size = 448,
    ):
        super(DINOv2_Encoder, self).__init__()
        
        self.model = torch.hub.load('facebookresearch/dinov2', model_name)
        self.model.eval().to(device)
        self.device = device
        self.antialias = antialias
        self.dtype = torch.float32

        self.mean = torch.Tensor(self.IMAGENET_DEFAULT_MEAN)
        self.std = torch.Tensor(self.IMAGENET_DEFAULT_STD)
        self.size = size
        if freeze:
            self.freeze()


    def freeze(self):
        for param in self.model.parameters():
            param.requires_grad = False

    @torch.no_grad()
    def encoder(self, x):
        '''
        x: [b h w c], range from (-1, 1), rbg
        '''

        x = self.preprocess(x).to(self.device, self.dtype)

        b, c, h, w = x.shape
        patch_h, patch_w = h // 14, w // 14

        embeddings = self.model.forward_features(x)['x_norm_patchtokens']
        embeddings = rearrange(embeddings, 'b (h w) c -> b h w c', h = patch_h, w = patch_w)

        return  rearrange(embeddings, 'b h w c -> b c h w')

    def preprocess(self, x):
        ''' x
        '''
        # normalize to [0,1],
        x = torch.nn.functional.interpolate(
            x,
            size=(self.size, self.size),
            mode='bicubic',
            align_corners=True,
            antialias=self.antialias,
        )

        x = (x + 1.0) / 2.0
        # renormalize according to dino
        mean = self.mean.view(1, 3, 1, 1).to(x.device)
        std = self.std.view(1, 3, 1, 1).to(x.device)
        x = (x - mean) / std

        return x
    
    def to(self, device, dtype=None):
        if dtype is not None:
            self.dtype = dtype
            self.model.to(device, dtype)
            self.mean.to(device, dtype)
            self.std.to(device, dtype)
        else:
            self.model.to(device)
            self.mean.to(device)
            self.std.to(device)
        return self

    def __call__(self, x, **kwargs):
        return self.encoder(x, **kwargs)

class StableNormalPipeline(StableDiffusionControlNetPipeline):
    """ Pipeline for monocular normals estimation using the Marigold method: https://marigoldmonodepth.github.io.
    Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]



    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel]],
        dino_controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel]],
        scheduler: Union[DDIMScheduler],
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
        default_denoising_steps: Optional[int] = 10,
        default_processing_resolution: Optional[int] = 768,
        prompt="The normal map",
        empty_text_embedding=None,
    ):
        super().__init__(
            vae,
            text_encoder,
            tokenizer,
            unet,
            controlnet,
            scheduler,
            safety_checker,
            feature_extractor,
            image_encoder,
            requires_safety_checker,
                )

        self.register_modules(
            dino_controlnet=dino_controlnet,
        )

        self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.dino_image_processor = lambda x: x / 127.5 -1.

        self.default_denoising_steps = default_denoising_steps
        self.default_processing_resolution = default_processing_resolution
        self.prompt = prompt
        self.prompt_embeds = None
        self.empty_text_embedding = empty_text_embedding
        self.prior = DINOv2_Encoder(size=672)

    def check_inputs(
        self,
        image: PipelineImageInput,
        num_inference_steps: int,
        ensemble_size: int,
        processing_resolution: int,
        resample_method_input: str,
        resample_method_output: str,
        batch_size: int,
        ensembling_kwargs: Optional[Dict[str, Any]],
        latents: Optional[torch.Tensor],
        generator: Optional[Union[torch.Generator, List[torch.Generator]]],
        output_type: str,
        output_uncertainty: bool,
    ) -> int:
        if num_inference_steps is None:
            raise ValueError("`num_inference_steps` is not specified and could not be resolved from the model config.")
        if num_inference_steps < 1:
            raise ValueError("`num_inference_steps` must be positive.")
        if ensemble_size < 1:
            raise ValueError("`ensemble_size` must be positive.")
        if ensemble_size == 2:
            logger.warning(
                "`ensemble_size` == 2 results are similar to no ensembling (1); "
                "consider increasing the value to at least 3."
            )
        if ensemble_size == 1 and output_uncertainty:
            raise ValueError(
                "Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` "
                "greater than 1."
            )
        if processing_resolution is None:
            raise ValueError(
                "`processing_resolution` is not specified and could not be resolved from the model config."
            )
        if processing_resolution < 0:
            raise ValueError(
                "`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
                "downsampled processing."
            )
        if processing_resolution % self.vae_scale_factor != 0:
            raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
        if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
            raise ValueError(
                "`resample_method_input` takes string values compatible with PIL library: "
                "nearest, nearest-exact, bilinear, bicubic, area."
            )
        if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
            raise ValueError(
                "`resample_method_output` takes string values compatible with PIL library: "
                "nearest, nearest-exact, bilinear, bicubic, area."
            )
        if batch_size < 1:
            raise ValueError("`batch_size` must be positive.")
        if output_type not in ["pt", "np"]:
            raise ValueError("`output_type` must be one of `pt` or `np`.")
        if latents is not None and generator is not None:
            raise ValueError("`latents` and `generator` cannot be used together.")
        if ensembling_kwargs is not None:
            if not isinstance(ensembling_kwargs, dict):
                raise ValueError("`ensembling_kwargs` must be a dictionary.")
            if "reduction" in ensembling_kwargs and ensembling_kwargs["reduction"] not in ("closest", "mean"):
                raise ValueError("`ensembling_kwargs['reduction']` can be either `'closest'` or `'mean'`.")

        # image checks
        num_images = 0
        W, H = None, None
        if not isinstance(image, list):
            image = [image]
        for i, img in enumerate(image):
            if isinstance(img, np.ndarray) or torch.is_tensor(img):
                if img.ndim not in (2, 3, 4):
                    raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
                H_i, W_i = img.shape[-2:]
                N_i = 1
                if img.ndim == 4:
                    N_i = img.shape[0]
            elif isinstance(img, Image.Image):
                W_i, H_i = img.size
                N_i = 1
            else:
                raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
            if W is None:
                W, H = W_i, H_i
            elif (W, H) != (W_i, H_i):
                raise ValueError(
                    f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
                )
            num_images += N_i

        # latents checks
        if latents is not None:
            if not torch.is_tensor(latents):
                raise ValueError("`latents` must be a torch.Tensor.")
            if latents.dim() != 4:
                raise ValueError(f"`latents` has unsupported dimensions or shape: {latents.shape}.")

            if processing_resolution > 0:
                max_orig = max(H, W)
                new_H = H * processing_resolution // max_orig
                new_W = W * processing_resolution // max_orig
                if new_H == 0 or new_W == 0:
                    raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]")
                W, H = new_W, new_H
            w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor
            h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor
            shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w)

            if latents.shape != shape_expected:
                raise ValueError(f"`latents` has unexpected shape={latents.shape} expected={shape_expected}.")

        # generator checks
        if generator is not None:
            if isinstance(generator, list):
                if len(generator) != num_images * ensemble_size:
                    raise ValueError(
                        "The number of generators must match the total number of ensemble members for all input images."
                    )
                if not all(g.device.type == generator[0].device.type for g in generator):
                    raise ValueError("`generator` device placement is not consistent in the list.")
            elif not isinstance(generator, torch.Generator):
                raise ValueError(f"Unsupported generator type: {type(generator)}.")

        return num_images

    def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        progress_bar_config = dict(**self._progress_bar_config)
        progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
        progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
        if iterable is not None:
            return tqdm(iterable, **progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_inference_steps: Optional[int] = None,
        ensemble_size: int = 1,
        processing_resolution: Optional[int] = None,
        match_input_resolution: bool = True,
        resample_method_input: str = "bilinear",
        resample_method_output: str = "bilinear",
        batch_size: int = 1,
        ensembling_kwargs: Optional[Dict[str, Any]] = None,
        latents: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        output_type: str = "np",
        output_uncertainty: bool = False,
        output_latent: bool = False,
        return_dict: bool = True,
    ):
        """
        Function invoked when calling the pipeline.

        Args:
            image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
                `List[torch.Tensor]`: An input image or images used as an input for the normals estimation task. For
                arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
                by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
                three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
                same width and height.
            num_inference_steps (`int`, *optional*, defaults to `None`):
                Number of denoising diffusion steps during inference. The default value `None` results in automatic
                selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
                for Marigold-LCM models.
            ensemble_size (`int`, defaults to `1`):
                Number of ensemble predictions. Recommended values are 5 and higher for better precision, or 1 for
                faster inference.
            processing_resolution (`int`, *optional*, defaults to `None`):
                Effective processing resolution. When set to `0`, matches the larger input image dimension. This
                produces crisper predictions, but may also lead to the overall loss of global context. The default
                value `None` resolves to the optimal value from the model config.
            match_input_resolution (`bool`, *optional*, defaults to `True`):
                When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
                side of the output will equal to `processing_resolution`.
            resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
                Resampling method used to resize input images to `processing_resolution`. The accepted values are:
                `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
            resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
                Resampling method used to resize output predictions to match the input resolution. The accepted values
                are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
            batch_size (`int`, *optional*, defaults to `1`):
                Batch size; only matters when setting `ensemble_size` or passing a tensor of images.
            ensembling_kwargs (`dict`, *optional*, defaults to `None`)
                Extra dictionary with arguments for precise ensembling control. The following options are available:
                - reduction (`str`, *optional*, defaults to `"closest"`): Defines the ensembling function applied in
                  every pixel location, can be either `"closest"` or `"mean"`.
            latents (`torch.Tensor`, *optional*, defaults to `None`):
                Latent noise tensors to replace the random initialization. These can be taken from the previous
                function call's output.
            generator (`torch.Generator`, or `List[torch.Generator]`, *optional*, defaults to `None`):
                Random number generator object to ensure reproducibility.
            output_type (`str`, *optional*, defaults to `"np"`):
                Preferred format of the output's `prediction` and the optional `uncertainty` fields. The accepted
                values are: `"np"` (numpy array) or `"pt"` (torch tensor).
            output_uncertainty (`bool`, *optional*, defaults to `False`):
                When enabled, the output's `uncertainty` field contains the predictive uncertainty map, provided that
                the `ensemble_size` argument is set to a value above 2.
            output_latent (`bool`, *optional*, defaults to `False`):
                When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
                within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
                `latents` argument.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.marigold.MarigoldDepthOutput`] instead of a plain tuple.

        Examples:

        Returns:
            [`~pipelines.marigold.MarigoldNormalsOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.marigold.MarigoldNormalsOutput`] is returned, otherwise a
                `tuple` is returned where the first element is the prediction, the second element is the uncertainty
                (or `None`), and the third is the latent (or `None`).
        """

        # 0. Resolving variables.
        device = self._execution_device
        dtype = self.dtype

        # Model-specific optimal default values leading to fast and reasonable results.
        if num_inference_steps is None:
            num_inference_steps = self.default_denoising_steps
        if processing_resolution is None:
            processing_resolution = self.default_processing_resolution


        image, padding, original_resolution = self.image_processor.preprocess(
            image, processing_resolution, resample_method_input, device, dtype
        )  # [N,3,PPH,PPW]

        image_latent, gaus_noise = self.prepare_latents(
            image, latents, generator, ensemble_size, batch_size
        )  # [N,4,h,w], [N,4,h,w]

        # 0. X_start latent obtain
        predictor = self.x_start_pipeline(image, latents=gaus_noise, 
                                          processing_resolution=processing_resolution, skip_preprocess=True)
        x_start_latent = predictor.latent

        # 1. Check inputs.
        num_images = self.check_inputs(
            image,
            num_inference_steps,
            ensemble_size,
            processing_resolution,
            resample_method_input,
            resample_method_output,
            batch_size,
            ensembling_kwargs,
            latents,
            generator,
            output_type,
            output_uncertainty,
        )


        # 2. Prepare empty text conditioning.
        # Model invocation: self.tokenizer, self.text_encoder.
        if self.empty_text_embedding is None:
            prompt = ""
            text_inputs = self.tokenizer(
                prompt,
                padding="do_not_pad",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids.to(device)
            self.empty_text_embedding = self.text_encoder(text_input_ids)[0]  # [1,2,1024]



        # 3. prepare prompt
        if self.prompt_embeds is None:
            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                self.prompt,
                device,
                num_images_per_prompt,
                False,
                negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=None,
                lora_scale=None,
                clip_skip=None,
            )
            self.prompt_embeds = prompt_embeds
            self.negative_prompt_embeds = negative_prompt_embeds



        # 5. dino guider features obtaining
        ## TODO different case-1
        dino_features = self.prior(image)
        dino_features = self.dino_controlnet.dino_controlnet_cond_embedding(dino_features)
        dino_features = self.match_noisy(dino_features, x_start_latent)

        del (
                image,
        )

        # 7. denoise sampling, using heuritic sampling proposed by Ye.

        t_start = self.x_start_pipeline.t_start
        self.scheduler.set_timesteps(num_inference_steps, t_start=t_start,device=device)

        cond_scale =controlnet_conditioning_scale
        pred_latent = x_start_latent

        cur_step = 0

        # dino controlnet
        dino_down_block_res_samples, dino_mid_block_res_sample = self.dino_controlnet(
            dino_features.detach(),
            0, # not depend on time steps
            encoder_hidden_states=self.prompt_embeds,
            conditioning_scale=cond_scale,
            guess_mode=False,
            return_dict=False,
        )
        assert dino_mid_block_res_sample == None

        pred_latents = []

        last_pred_latent = pred_latent
        for (t, prev_t) in self.progress_bar(zip(self.scheduler.timesteps,self.scheduler.prev_timesteps), leave=False, desc="Diffusion steps..."):

            _dino_down_block_res_samples = [dino_down_block_res_sample for dino_down_block_res_sample in dino_down_block_res_samples]  # copy, avoid repeat quiery

            # controlnet
            down_block_res_samples, mid_block_res_sample = self.controlnet(
                image_latent.detach(),
                t,
                encoder_hidden_states=self.prompt_embeds,
                conditioning_scale=cond_scale,
                guess_mode=False,
                return_dict=False,
            )

            # SG-DRN
            noise = self.dino_unet_forward(
                self.unet,
                pred_latent,
                t,
                encoder_hidden_states=self.prompt_embeds,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
                dino_down_block_additional_residuals= _dino_down_block_res_samples,
                return_dict=False,
            )[0]  # [B,4,h,w]

            pred_latents.append(noise)
            # ddim steps
            out = self.scheduler.step(
                noise, t, prev_t, pred_latent, gaus_noise = gaus_noise, generator=generator, cur_step=cur_step+1  # NOTE that cur_step dirs to next_step
            )# [B,4,h,w]
            pred_latent = out.prev_sample

            cur_step += 1

        del (
            image_latent,
            dino_features,
        )
        pred_latent = pred_latents[-1]  # using x0

        # decoder
        prediction = self.decode_prediction(pred_latent)
        prediction = self.image_processor.unpad_image(prediction, padding)  # [N*E,3,PH,PW]
        prediction = self.image_processor.resize_antialias(prediction, original_resolution, resample_method_output, is_aa=False)  # [N,3,H,W]

        if match_input_resolution:
            prediction = self.image_processor.resize_antialias(
                prediction, original_resolution, resample_method_output, is_aa=False
            )  # [N,3,H,W]

        if match_input_resolution:
            prediction = self.image_processor.resize_antialias(
                prediction, original_resolution, resample_method_output, is_aa=False
            )  # [N,3,H,W]
        prediction = self.normalize_normals(prediction)  # [N,3,H,W]

        if output_type == "np":
            prediction = self.image_processor.pt_to_numpy(prediction)  # [N,H,W,3]
            prediction = prediction.clip(min=-1, max=1)

        # 11. Offload all models
        self.maybe_free_model_hooks()

        return StableNormalOutput(
            prediction=prediction,
            latent=pred_latent,
            gaus_noise=gaus_noise
        )

    # Copied from diffusers.pipelines.marigold.pipeline_marigold_depth.MarigoldDepthPipeline.prepare_latents
    def prepare_latents(
        self,
        image: torch.Tensor,
        latents: Optional[torch.Tensor],
        generator: Optional[torch.Generator],
        ensemble_size: int,
        batch_size: int,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        def retrieve_latents(encoder_output):
            if hasattr(encoder_output, "latent_dist"):
                return encoder_output.latent_dist.mode()
            elif hasattr(encoder_output, "latents"):
                return encoder_output.latents
            else:
                raise AttributeError("Could not access latents of provided encoder_output")



        image_latent = torch.cat(
            [
                retrieve_latents(self.vae.encode(image[i : i + batch_size]))
                for i in range(0, image.shape[0], batch_size)
            ],
            dim=0,
        )  # [N,4,h,w]
        image_latent = image_latent * self.vae.config.scaling_factor
        image_latent = image_latent.repeat_interleave(ensemble_size, dim=0)  # [N*E,4,h,w]

        pred_latent = latents
        if pred_latent is None:


            pred_latent = randn_tensor(
                image_latent.shape,
                generator=generator,
                device=image_latent.device,
                dtype=image_latent.dtype,
            )  # [N*E,4,h,w]

        return image_latent, pred_latent

    def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor:
        if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels:
            raise ValueError(
                f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}."
            )

        prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0]  # [B,3,H,W]

        return prediction  # [B,3,H,W]

    @staticmethod
    def normalize_normals(normals: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
        if normals.dim() != 4 or normals.shape[1] != 3:
            raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")

        norm = torch.norm(normals, dim=1, keepdim=True)
        normals /= norm.clamp(min=eps)

        return normals

    @staticmethod
    def match_noisy(dino, noisy):
        _, __, dino_h, dino_w =  dino.shape
        _, __, h, w =  noisy.shape

        if h == dino_h and w == dino_w:
            return dino
        else:
            return F.interpolate(dino, (h, w), mode='bilinear')










    @staticmethod
    def dino_unet_forward(
        self,  # NOTE that repurpose to UNet
        sample: torch.Tensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        dino_down_block_additional_residuals: Optional[torch.Tensor] = None,
        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
        The [`UNet2DConditionModel`] forward method.

        Args:
            sample (`torch.Tensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
            down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
            encoder_attention_mask (`torch.Tensor`):
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.


        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        t_emb = self.get_time_embed(sample=sample, timestep=timestep)
        emb = self.time_embedding(t_emb, timestep_cond)
        aug_emb = None

        class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
        if class_emb is not None:
            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb

        aug_emb = self.get_aug_embed(
            emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
        )
        if self.config.addition_embed_type == "image_hint":
            aug_emb, hint = aug_emb
            sample = torch.cat([sample, hint], dim=1)

        emb = emb + aug_emb if aug_emb is not None else emb

        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

        encoder_hidden_states = self.process_encoder_hidden_states(
            encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
        )

        # 2. pre-process
        sample = self.conv_in(sample)

        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

        # 3. down
        # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
        # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
        if cross_attention_kwargs is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            lora_scale = cross_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
            deprecate(
                "T2I should not use down_block_additional_residuals",
                "1.3.0",
                "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
                       and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
                       for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
                standard_warn=False,
            )
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True



        def residual_downforward(
            self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None,
            additional_residuals: Optional[torch.Tensor] = None,
            *args, **kwargs,
        ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
            if len(args) > 0 or kwargs.get("scale", None) is not None:
                deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
                deprecate("scale", "1.0.0", deprecation_message)

            output_states = ()

            for resnet in self.resnets:
                if self.training and self.gradient_checkpointing:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs)

                        return custom_forward

                    if is_torch_version(">=", "1.11.0"):
                        hidden_states = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                        )
                    else:
                        hidden_states = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(resnet), hidden_states, temb
                        )
                else:
                    hidden_states = resnet(hidden_states, temb)
                    hidden_states += additional_residuals.pop(0)


                output_states = output_states + (hidden_states,)

            if self.downsamplers is not None:
                for downsampler in self.downsamplers:
                    hidden_states = downsampler(hidden_states)
                    hidden_states += additional_residuals.pop(0)

                output_states = output_states + (hidden_states,)

            return hidden_states, output_states


        def residual_blockforward(
            self,  ## NOTE that repurpose to unet_blocks
            hidden_states: torch.Tensor,
            temb: Optional[torch.Tensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            encoder_attention_mask: Optional[torch.Tensor] = None,
            additional_residuals: Optional[torch.Tensor] = None,
        ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
            if cross_attention_kwargs is not None:
                if cross_attention_kwargs.get("scale", None) is not None:
                    logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")



            output_states = ()

            blocks = list(zip(self.resnets, self.attentions))

            for i, (resnet, attn) in enumerate(blocks):
                if self.training and self.gradient_checkpointing:

                    def create_custom_forward(module, return_dict=None):
                        def custom_forward(*inputs):
                            if return_dict is not None:
                                return module(*inputs, return_dict=return_dict)
                            else:
                                return module(*inputs)

                        return custom_forward

                    ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        **ckpt_kwargs,
                    )
                    hidden_states = attn(
                        hidden_states,
                        encoder_hidden_states=encoder_hidden_states,
                        cross_attention_kwargs=cross_attention_kwargs,
                        attention_mask=attention_mask,
                        encoder_attention_mask=encoder_attention_mask,
                        return_dict=False,
                    )[0]
                else:
                    hidden_states = resnet(hidden_states, temb)
                    hidden_states = attn(
                        hidden_states,
                        encoder_hidden_states=encoder_hidden_states,
                        cross_attention_kwargs=cross_attention_kwargs,
                        attention_mask=attention_mask,
                        encoder_attention_mask=encoder_attention_mask,
                        return_dict=False,
                    )[0]

                hidden_states += additional_residuals.pop(0)

                output_states = output_states + (hidden_states,)

            if self.downsamplers is not None:
                for downsampler in self.downsamplers:
                    hidden_states = downsampler(hidden_states)
                    hidden_states += additional_residuals.pop(0)

                output_states = output_states + (hidden_states,)

            return hidden_states, output_states


        down_intrablock_additional_residuals = dino_down_block_additional_residuals

        sample += down_intrablock_additional_residuals.pop(0)
        down_block_res_samples = (sample,)

        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:

                sample, res_samples = residual_blockforward(
                    downsample_block,
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    additional_residuals = down_intrablock_additional_residuals,
                )

            else:
                sample, res_samples = residual_downforward(
                    downsample_block,
                    hidden_states=sample,
                    temb=emb,
                    additional_residuals = down_intrablock_additional_residuals,
                        )


            down_block_res_samples += res_samples


        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = self.mid_block(sample, emb)

            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_intrablock_additional_residuals) > 0
                and sample.shape == down_intrablock_additional_residuals[0].shape
            ):
                sample += down_intrablock_additional_residuals.pop(0)

        if is_controlnet:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)



    @staticmethod
    def ensemble_normals(
        normals: torch.Tensor, output_uncertainty: bool, reduction: str = "closest"
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Ensembles the normals maps represented by the `normals` tensor with expected shape `(B, 3, H, W)`, where B is
        the number of ensemble members for a given prediction of size `(H x W)`.

        Args:
            normals (`torch.Tensor`):
                Input ensemble normals maps.
            output_uncertainty (`bool`, *optional*, defaults to `False`):
                Whether to output uncertainty map.
            reduction (`str`, *optional*, defaults to `"closest"`):
                Reduction method used to ensemble aligned predictions. The accepted values are: `"closest"` and
                `"mean"`.

        Returns:
            A tensor of aligned and ensembled normals maps with shape `(1, 3, H, W)` and optionally a tensor of
            uncertainties of shape `(1, 1, H, W)`.
        """
        if normals.dim() != 4 or normals.shape[1] != 3:
            raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
        if reduction not in ("closest", "mean"):
            raise ValueError(f"Unrecognized reduction method: {reduction}.")

        mean_normals = normals.mean(dim=0, keepdim=True)  # [1,3,H,W]
        mean_normals = MarigoldNormalsPipeline.normalize_normals(mean_normals)  # [1,3,H,W]

        sim_cos = (mean_normals * normals).sum(dim=1, keepdim=True)  # [E,1,H,W]
        sim_cos = sim_cos.clamp(-1, 1)  # required to avoid NaN in uncertainty with fp16

        uncertainty = None
        if output_uncertainty:
            uncertainty = sim_cos.arccos()  # [E,1,H,W]
            uncertainty = uncertainty.mean(dim=0, keepdim=True) / np.pi  # [1,1,H,W]

        if reduction == "mean":
            return mean_normals, uncertainty  # [1,3,H,W], [1,1,H,W]

        closest_indices = sim_cos.argmax(dim=0, keepdim=True)  # [1,1,H,W]
        closest_indices = closest_indices.repeat(1, 3, 1, 1)  # [1,3,H,W]
        closest_normals = torch.gather(normals, 0, closest_indices)  # [1,3,H,W]

        return closest_normals, uncertainty  # [1,3,H,W], [1,1,H,W]

# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps