Spaces:
Runtime error
Runtime error
File size: 10,693 Bytes
9dfa4de 3c84520 9dfa4de 3c84520 9dfa4de 3c84520 9dfa4de 3c84520 9dfa4de a852fbd 9dfa4de 53a077e 9dfa4de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import functools
import os
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
import spaces
import diffusers
from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline
from stablenormal.pipeline_stablenormal import StableNormalPipeline
from stablenormal.scheduler.heuristics_ddimsampler import HEURI_DDIMScheduler
from data_utils import HWC3, resize_image
import sys
import cv2
sys.path.append('./geowizard')
from models.geowizard_pipeline import DepthNormalEstimationPipeline
class Geowizard(object):
'''
Simple Stable Diffusion Package
'''
def __init__(self):
self.model = DepthNormalEstimationPipeline.from_pretrained("lemonaddie/Geowizard", torch_dtype=torch.float16)
def cuda(self):
self.model.cuda()
return self
def cpu(self):
self.model.cpu()
return self
def float(self):
self.model.float()
return self
def to(self, device):
self.model.to(device)
return self
def eval(self):
self.model.eval()
return self
def train(self):
self.model.train()
return self
@torch.no_grad()
def __call__(self, img, image_resolution=768):
pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)),
denoising_steps = 10,
ensemble_size= 1,
processing_res = image_resolution,
match_input_res = True,
domain = "indoor",
color_map = "Spectral",
show_progress_bar = False,
)
pred_normal = pipe_out.normal_np
pred_normal = (pred_normal + 1) / 2 * 255
pred_normal = pred_normal.astype(np.uint8)
return pred_normal
def __repr__(self):
return f"model: \n{self.model}"
class Marigold(Geowizard):
'''
Simple Stable Diffusion Package
'''
def __init__(self):
self.model= diffusers.MarigoldNormalsPipeline.from_pretrained("prs-eth/marigold-normals-v0-1", torch_dtype=torch.float16)
@torch.no_grad()
def __call__(self, img, image_resolution=768):
pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)))
pred_normal = pipe_out.prediction[0]
pred_normal[..., 0] = -pred_normal[..., 0]
pred_normal = (pred_normal + 1) / 2 * 255
pred_normal = pred_normal.astype(np.uint8)
return pred_normal
def __repr__(self):
return f"model: \n{self.model}"
class StableNormal(Geowizard):
'''
Simple Stable Diffusion Package
'''
def __init__(self):
x_start_pipeline = YOSONormalsPipeline.from_pretrained('Stable-X/yoso-normal-v0-2', trust_remote_code=True,
variant="fp16", torch_dtype=torch.float16)
self.model = StableNormalPipeline.from_pretrained('Stable-X/stable-normal-v0-1', trust_remote_code=True,
variant="fp16", torch_dtype=torch.float16,
scheduler=HEURI_DDIMScheduler(prediction_type='sample',
beta_start=0.00085, beta_end=0.0120,
beta_schedule = "scaled_linear"))
# two stage concat
self.model.x_start_pipeline = x_start_pipeline
self.model.x_start_pipeline.to('cuda', torch.float16)
self.model.prior.to('cuda', torch.float16)
@torch.no_grad()
def __call__(self, img, image_resolution=768):
pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)))
pred_normal = pipe_out.prediction[0]
pred_normal = (pred_normal + 1) / 2 * 255
pred_normal = pred_normal.astype(np.uint8)
return pred_normal
def to(self, device):
self.model.to(device, torch.float16)
def __repr__(self):
return f"model: \n{self.model}"
class DSINE(object):
'''
Simple Stable Diffusion Package
'''
def __init__(self):
self.model = torch.hub.load("hugoycj/DSINE-hub", "DSINE", local_file_path='./models/dsine.pt', trust_repo=True)
def cuda(self):
self.model.cuda()
return self
def float(self):
self.model.float()
return self
def to(self, device):
self.model.to(device)
return self
def eval(self):
self.model.eval()
return self
def train(self):
self.model.train()
return self
@torch.no_grad()
def __call__(self, img, image_resolution=768):
pred_normal = self.model.infer_cv2(img)[0] # (3, H, W)
pred_normal = (pred_normal + 1) / 2 * 255
pred_normal = pred_normal.cpu().numpy().transpose(1, 2, 0)
# rgb
pred_normal = pred_normal.astype(np.uint8)
return pred_normal
def __repr__(self):
return f"model: \n{self.model}"
def process(
pipe_list,
path_input,
):
names = ['DSINE', 'Marigold', 'GeoWizard', 'StableNormal']
path_out_vis_list = []
for pipe in pipe_list:
try:
pipe.to('cuda')
except:
pass
img = cv2.imread(path_input)
raw_input_image = HWC3(img)
ori_H, ori_W, _ = raw_input_image.shape
img = resize_image(raw_input_image, 768)
pipe_out = pipe(
img,
768,
)
pred_normal= cv2.resize(pipe_out, (ori_W, ori_H))
path_out_vis_list.append(Image.fromarray(pred_normal))
try:
pipe.to('cpu')
except:
pass
_output = path_out_vis_list + [None] * (4 - len(path_out_vis_list))
yield _output
def run_demo_server(pipe):
process_pipe = spaces.GPU(functools.partial(process, pipe), duration=120)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="Normal Estimation Comparison",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
""",
) as demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="filepath",
height=256,
)
with gr.Column():
submit_btn = gr.Button(value="Compute normal", variant="primary")
clear_btn = gr.Button(value="Clear")
with gr.Row():
with gr.Column():
DSINE_output_slider = gr.Image(
label="DSINE",
type="filepath",
)
with gr.Column():
marigold_output_slider = gr.Image(
label="Marigold",
type="filepath",
)
with gr.Row():
with gr.Column():
geowizard_output_slider = gr.Image(
label="Geowizard",
type="filepath",
)
with gr.Column():
Ours_slider = gr.Image(
label="StableNormal",
type="filepath",
)
outputs = [
DSINE_output_slider,
marigold_output_slider,
geowizard_output_slider,
Ours_slider,
]
submit_btn.click(
fn=process_pipe,
inputs=input_image,
outputs=outputs,
concurrency_limit=1,
)
gr.Examples(
fn=process_pipe,
examples=sorted([
os.path.join("files", "images", name)
for name in os.listdir(os.path.join("files", "images"))
]),
inputs=input_image,
outputs=outputs,
cache_examples=False,
)
def clear_fn():
out = []
out += [
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Image(value=None, interactive=True),
None,
None,
None,
None,
None,
None,
]
return out
clear_btn.click(
fn=clear_fn,
inputs=[],
outputs=
[
submit_btn,
input_image,
marigold_output_slider,
geowizard_output_slider,
DSINE_output_slider,
Ours_slider,
],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dsine_pipe = DSINE()
marigold_pipe = Marigold()
geowizard_pipe = Geowizard()
our_pipe = StableNormal()
run_demo_server([dsine_pipe, marigold_pipe, geowizard_pipe, our_pipe])
if __name__ == "__main__":
main()
|