File size: 4,616 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import cv2
import json
import numpy as np
import os.path as osp
from collections import deque

from dust3r.utils.image import imread_cv2
from .base_many_view_dataset import BaseManyViewDataset

'''
Preprocessing code of scannetpp is from splatam
'''

class Scannetpp(BaseManyViewDataset):
    def __init__(self, num_seq=100, num_frames=5, 
                 min_thresh=10, max_thresh=100, 
                 test_id=None, full_video=False, 
                 kf_every=1, *args, ROOT, **kwargs):
        self.ROOT = ROOT
        super().__init__(*args, **kwargs)
        self.num_seq = num_seq
        self.num_frames = num_frames
        self.max_thresh = max_thresh
        self.min_thresh = min_thresh
        self.test_id = test_id
        self.full_video = full_video
        self.kf_every = kf_every

         # load all scenes
        self.load_all_scenes(ROOT)
    
    def __len__(self):
        return len(self.scene_list) * self.num_seq
    
    def load_all_scenes(self, base_dir, num_seq=200):
        
        if self.test_id is None:
            meta_split = osp.join(base_dir, 'splits', f'nvs_sem_{self.split}.txt')
            
            if not osp.exists(meta_split):
                raise FileNotFoundError(f"Split file {meta_split} not found")
            
            with open(meta_split) as f:
                self.scene_list = f.read().splitlines()
                
            print(f"Found {len(self.scene_list)} scenes in split {self.split}")
            
        else:
            if isinstance(self.test_id, list):
                self.scene_list = self.test_id
            else:
                self.scene_list = [self.test_id]
                
            print(f"Test_id: {self.test_id}")
    
    def _get_views(self, idx, resolution, rng, attempts=0):
        scene_id = self.scene_list[idx // self.num_seq]

        cams_metadata_path = osp.join(self.ROOT, 'data', scene_id, 'dslr/nerfstudio/transforms_undistorted.json')
        cams_meta_data = json.load(open(cams_metadata_path, "r"))
        fx, fy, cx, cy = cams_meta_data['fl_x'], cams_meta_data['fl_y'], cams_meta_data['cx'], cams_meta_data['cy']

        frame_meta_data = cams_meta_data['frames']
        train_info_path = osp.join(self.ROOT, 'data', scene_id, 'dslr/train_test_lists.json')
        train_info = json.load(open(train_info_path, "r"))

        imgs_idxs_ = sorted(train_info['train'])
        imgs_idxs = self.sample_frame_idx(imgs_idxs_, rng, full_video=self.full_video)
        imgs_idxs = deque(imgs_idxs)

        filepath_index_mapping = {frame["file_path"]: index for index, frame in enumerate(frame_meta_data)}

        views = []
        while len(imgs_idxs) > 0:
            im_idx = imgs_idxs.popleft()

            # Load image data
            impath = osp.join(self.ROOT, 'data', scene_id, 'dslr/undistorted_images', im_idx)
            depthpath = osp.join(self.ROOT, 'data', scene_id, 'dslr/undistorted_depths', im_idx.replace('.JPG', '.png'))

            rgb_image = imread_cv2(impath)
            depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
            depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0

            # Load camera params
            frame_metadata = frame_meta_data[filepath_index_mapping.get(im_idx)]
            intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
            
            camera_pose = np.array(frame_metadata["transform_matrix"], dtype=np.float32)
            # gl to cv
            camera_pose[:, 1:3] *= -1.0

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
            
            num_valid = (depthmap > 0.0).sum()
            if num_valid == 0 or (not np.isfinite(camera_pose).all()):
                if self.full_video:
                    print(f"Warning: No valid depthmap found for {impath}")
                    continue
                else:
                    if attempts >= 5:
                        new_idx = rng.integers(0, self.__len__()-1)
                        return self._get_views(new_idx, resolution, rng)
                    return self._get_views(idx, resolution, rng, attempts+1)
            
            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset='scannetpp',
                label=osp.join(scene_id, im_idx),
                instance=osp.split(impath)[1],
            ))
        return views