Spaces:
Sleeping
Sleeping
File size: 14,955 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Base class for the global alignement procedure
# --------------------------------------------------------
from copy import deepcopy
import numpy as np
import torch
import torch.nn as nn
import roma
from copy import deepcopy
import tqdm
from dust3r.utils.geometry import inv, geotrf
from dust3r.utils.device import to_numpy
from dust3r.utils.image import rgb
from dust3r.viz import SceneViz, segment_sky, auto_cam_size
from dust3r.optim_factory import adjust_learning_rate_by_lr
from dust3r.cloud_opt.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p,
cosine_schedule, linear_schedule, get_conf_trf)
import dust3r.cloud_opt.init_im_poses as init_fun
class BasePCOptimizer (nn.Module):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, **kwargs):
if len(args) == 1 and len(kwargs) == 0:
other = deepcopy(args[0])
attrs = '''edges is_symmetrized dist n_imgs pred_i pred_j imshapes
min_conf_thr conf_thr conf_i conf_j im_conf
base_scale norm_pw_scale POSE_DIM pw_poses
pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose'''.split()
self.__dict__.update({k: other[k] for k in attrs})
else:
self._init_from_views(*args, **kwargs)
def _init_from_views(self, view1, view2, pred1, pred2,
dist='l1',
conf='log',
min_conf_thr=3,
base_scale=0.5,
allow_pw_adaptors=False,
pw_break=20,
rand_pose=torch.randn,
iterationsCount=None,
verbose=True):
super().__init__()
if not isinstance(view1['idx'], list):
view1['idx'] = view1['idx'].tolist()
if not isinstance(view2['idx'], list):
view2['idx'] = view2['idx'].tolist()
self.edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])]
self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges}
self.dist = ALL_DISTS[dist]
self.verbose = verbose
self.n_imgs = self._check_edges()
# input data
pred1_pts = pred1['pts3d']
pred2_pts = pred2['pts3d_in_other_view']
self.pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)})
self.pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)})
self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts)
# work in log-scale with conf
pred1_conf = pred1['conf']
pred2_conf = pred2['conf']
self.min_conf_thr = min_conf_thr
self.conf_trf = get_conf_trf(conf)
self.conf_i = NoGradParamDict({ij: pred1_conf[n] for n, ij in enumerate(self.str_edges)})
self.conf_j = NoGradParamDict({ij: pred2_conf[n] for n, ij in enumerate(self.str_edges)})
self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf)
# pairwise pose parameters
self.base_scale = base_scale
self.norm_pw_scale = True
self.pw_break = pw_break
self.POSE_DIM = 7
self.pw_poses = nn.Parameter(rand_pose((self.n_edges, 1+self.POSE_DIM))) # pairwise poses
self.pw_adaptors = nn.Parameter(torch.zeros((self.n_edges, 2))) # slight xy/z adaptation
self.pw_adaptors.requires_grad_(allow_pw_adaptors)
self.has_im_poses = False
self.rand_pose = rand_pose
# possibly store images for show_pointcloud
self.imgs = None
if 'img' in view1 and 'img' in view2:
imgs = [torch.zeros((3,)+hw) for hw in self.imshapes]
for v in range(len(self.edges)):
idx = view1['idx'][v]
imgs[idx] = view1['img'][v]
idx = view2['idx'][v]
imgs[idx] = view2['img'][v]
self.imgs = rgb(imgs)
@property
def n_edges(self):
return len(self.edges)
@property
def str_edges(self):
return [edge_str(i, j) for i, j in self.edges]
@property
def imsizes(self):
return [(w, h) for h, w in self.imshapes]
@property
def device(self):
return next(iter(self.parameters())).device
def state_dict(self, trainable=True):
all_params = super().state_dict()
return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable}
def load_state_dict(self, data):
return super().load_state_dict(self.state_dict(trainable=False) | data)
def _check_edges(self):
indices = sorted({i for edge in self.edges for i in edge})
assert indices == list(range(len(indices))), 'bad pair indices: missing values '
return len(indices)
@torch.no_grad()
def _compute_img_conf(self, pred1_conf, pred2_conf):
im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes])
for e, (i, j) in enumerate(self.edges):
im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e])
im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e])
return im_conf
def get_adaptors(self):
adapt = self.pw_adaptors
adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1) # (scale_xy, scale_xy, scale_z)
if self.norm_pw_scale: # normalize so that the product == 1
adapt = adapt - adapt.mean(dim=1, keepdim=True)
return (adapt / self.pw_break).exp()
def _get_poses(self, poses):
# normalize rotation
Q = poses[:, :4]
T = signed_expm1(poses[:, 4:7])
RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous()
return RT
def _set_pose(self, poses, idx, R, T=None, scale=None, force=False):
# all poses == cam-to-world
pose = poses[idx]
if not (pose.requires_grad or force):
return pose
if R.shape == (4, 4):
assert T is None
T = R[:3, 3]
R = R[:3, :3]
if R is not None:
pose.data[0:4] = roma.rotmat_to_unitquat(R)
if T is not None:
pose.data[4:7] = signed_log1p(T / (scale or 1)) # translation is function of scale
if scale is not None:
assert poses.shape[-1] in (8, 13)
pose.data[-1] = np.log(float(scale))
return pose
def get_pw_norm_scale_factor(self):
if self.norm_pw_scale:
# normalize scales so that things cannot go south
# we want that exp(scale) ~= self.base_scale
return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp()
else:
return 1 # don't norm scale for known poses
def get_pw_scale(self):
scale = self.pw_poses[:, -1].exp() # (n_edges,)
scale = scale * self.get_pw_norm_scale_factor()
return scale
def get_pw_poses(self): # cam to world
RT = self._get_poses(self.pw_poses)
scaled_RT = RT.clone()
scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1) # scale the rotation AND translation
return scaled_RT
def get_masks(self):
return [(conf > self.min_conf_thr) for conf in self.im_conf]
def depth_to_pts3d(self):
raise NotImplementedError()
def get_pts3d(self, raw=False):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
def _set_focal(self, idx, focal, force=False):
raise NotImplementedError()
def get_focals(self):
raise NotImplementedError()
def get_known_focal_mask(self):
raise NotImplementedError()
def get_principal_points(self):
raise NotImplementedError()
def get_conf(self, mode=None):
trf = self.conf_trf if mode is None else get_conf_trf(mode)
return [trf(c) for c in self.im_conf]
def get_im_poses(self):
raise NotImplementedError()
def _set_depthmap(self, idx, depth, force=False):
raise NotImplementedError()
def get_depthmaps(self, raw=False):
raise NotImplementedError()
@torch.no_grad()
def clean_pointcloud(self, tol=0.001, max_bad_conf=0):
""" Method:
1) express all 3d points in each camera coordinate frame
2) if they're in front of a depthmap --> then lower their confidence
"""
assert 0 <= tol < 1
cams = inv(self.get_im_poses())
K = self.get_intrinsics()
depthmaps = self.get_depthmaps()
res = deepcopy(self)
for i, pts3d in enumerate(self.depth_to_pts3d()):
for j in range(self.n_imgs):
if i == j:
continue
# project 3dpts in other view
Hi, Wi = self.imshapes[i]
Hj, Wj = self.imshapes[j]
proj = geotrf(cams[j], pts3d[:Hi*Wi]).reshape(Hi, Wi, 3)
proj_depth = proj[:, :, 2]
u, v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1)
# check which points are actually in the visible cone
msk_i = (proj_depth > 0) & (0 <= u) & (u < Wj) & (0 <= v) & (v < Hj)
msk_j = v[msk_i], u[msk_i]
# find bad points = those in front but less confident
bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]
) & (res.im_conf[i][msk_i] < res.im_conf[j][msk_j])
bad_msk_i = msk_i.clone()
bad_msk_i[msk_i] = bad_points
res.im_conf[i][bad_msk_i] = res.im_conf[i][bad_msk_i].clip_(max=max_bad_conf)
return res
def forward(self, ret_details=False):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors()
proj_pts3d = self.get_pts3d()
# pre-compute pixel weights
weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}
loss = 0
if ret_details:
details = -torch.ones((self.n_imgs, self.n_imgs))
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
# distance in image i and j
aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
loss = loss + li + lj
if ret_details:
details[i, j] = li + lj
loss /= self.n_edges # average over all pairs
if ret_details:
return loss, details
return loss
def get_mst_tree(self):
return init_fun.init_minimum_spanning_tree(self, return_tree=True)
def get_tsp(self):
return init_fun.get_tsp(self)
@torch.cuda.amp.autocast(enabled=False)
def compute_global_alignment(self, init=None, niter_PnP=10, **kw):
if init is None:
pass
elif init == 'msp' or init == 'mst':
init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP)
elif init == 'known_poses':
init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr,
niter_PnP=niter_PnP)
else:
raise ValueError(f'bad value for {init=}')
return global_alignment_loop(self, **kw)
@torch.no_grad()
def mask_sky(self):
res = deepcopy(self)
for i in range(self.n_imgs):
sky = segment_sky(self.imgs[i])
res.im_conf[i][sky] = 0
return res
def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw):
viz = SceneViz()
if self.imgs is None:
colors = np.random.randint(0, 256, size=(self.n_imgs, 3))
colors = list(map(tuple, colors.tolist()))
for n in range(self.n_imgs):
viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n])
else:
viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks())
colors = np.random.randint(256, size=(self.n_imgs, 3))
# camera poses
im_poses = to_numpy(self.get_im_poses())
if cam_size is None:
cam_size = auto_cam_size(im_poses)
viz.add_cameras(im_poses, self.get_focals(), colors=colors,
images=self.imgs, imsizes=self.imsizes, cam_size=cam_size)
if show_pw_cams:
pw_poses = self.get_pw_poses()
viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size)
if show_pw_pts3d:
pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)]
viz.add_pointcloud(pts, (128, 0, 128))
viz.show(**kw)
return viz
def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6):
params = [p for p in net.parameters() if p.requires_grad]
if not params:
return net
verbose = net.verbose
if verbose:
print('Global alignement - optimizing for:')
print([name for name, value in net.named_parameters() if value.requires_grad])
lr_base = lr
optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9))
loss = float('inf')
if verbose:
with tqdm.tqdm(total=niter) as bar:
while bar.n < bar.total:
loss = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule)
bar.set_postfix_str(f'{lr=:g} loss={loss:g}')
bar.update()
else:
for n in range(niter):
loss = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule)
return loss
def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule):
t = cur_iter / niter
if schedule == 'cosine':
lr = cosine_schedule(t, lr_base, lr_min)
elif schedule == 'linear':
lr = linear_schedule(t, lr_base, lr_min)
else:
raise ValueError(f'bad lr {schedule=}')
adjust_learning_rate_by_lr(optimizer, lr)
optimizer.zero_grad()
loss = net()
loss.backward()
optimizer.step()
return float(loss)
|