Spaces:
Sleeping
Sleeping
File size: 16,502 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions for CroCo
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import builtins
import datetime
import os
import time
import math
import json
from collections import defaultdict, deque
from pathlib import Path
import numpy as np
import torch
import torch.distributed as dist
from torch import inf
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None, max_iter=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable)
space_fmt = ':' + str(len(str(len_iterable))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for it,obj in enumerate(iterable):
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len_iterable - 1:
eta_seconds = iter_time.global_avg * (len_iterable - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len_iterable, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len_iterable, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
if max_iter and it >= max_iter:
break
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len_iterable))
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = force or (get_world_size() > 8)
if is_master or force:
now = datetime.datetime.now().time()
builtin_print('[{}] '.format(now), end='') # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
#### Hengyi: WORLD_SIZE is the number of GPUs used in the training
# RANK is a unique identifier for each process in the distributed training
# Local_rank is the GPU index of the current process
# e.g. Consider a distributed training setup with 2 nodes, each having 4 GPUs (total WORLD_SIZE of 8):
# Node 1:
# Process (GPU) 0: RANK 0, LOCAL_RANK 0
# Process (GPU) 1: RANK 1, LOCAL_RANK 1
# Process (GPU) 2: RANK 2, LOCAL_RANK 2
# Process (GPU) 3: RANK 3, LOCAL_RANK 3
# Node 2:
# Process (GPU) 0: RANK 4, LOCAL_RANK 0
# Process (GPU) 1: RANK 5, LOCAL_RANK 1
# Process (GPU) 2: RANK 6, LOCAL_RANK 2
# Process (GPU) 3: RANK 7, LOCAL_RANK 3
nodist = args.nodist if hasattr(args,'nodist') else False
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
else:
print('Not using distributed mode')
setup_for_distributed(is_master=True) # hack
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self, enabled=True):
self._scaler = torch.cuda.amp.GradScaler(enabled=enabled)
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None):
output_dir = Path(args.output_dir)
if fname is None: fname = str(epoch)
checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname)
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': loss_scaler.state_dict(),
'args': args,
'epoch': epoch,
}
if best_so_far is not None: to_save['best_so_far'] = best_so_far
print(f'>> Saving model to {checkpoint_path} ...')
save_on_master(to_save, checkpoint_path)
def load_model(args, model_without_ddp, optimizer, loss_scaler):
args.start_epoch = 0
best_so_far = None
if args.resume is not None:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
print("Resume checkpoint %s" % args.resume)
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
args.start_epoch = checkpoint['epoch'] + 1
optimizer.load_state_dict(checkpoint['optimizer'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
if 'best_so_far' in checkpoint:
best_so_far = checkpoint['best_so_far']
print(" & best_so_far={:g}".format(best_so_far))
else:
print("")
print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='')
return best_so_far
def all_reduce_mean(x):
world_size = get_world_size()
if world_size > 1:
x_reduce = torch.tensor(x).cuda()
dist.all_reduce(x_reduce)
x_reduce /= world_size
return x_reduce.item()
else:
return x
def _replace(text, src, tgt, rm=''):
""" Advanced string replacement.
Given a text:
- replace all elements in src by the corresponding element in tgt
- remove all elements in rm
"""
if len(tgt) == 1:
tgt = tgt * len(src)
assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len"
for s,t in zip(src, tgt):
text = text.replace(s,t)
for c in rm:
text = text.replace(c,'')
return text
def filename( obj ):
""" transform a python obj or cmd into a proper filename.
- \1 gets replaced by slash '/'
- \2 gets replaced by comma ','
"""
if not isinstance(obj, str):
obj = repr(obj)
obj = str(obj).replace('()','')
obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"')
assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj
return obj
def _get_num_layer_for_vit(var_name, enc_depth, dec_depth):
if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"):
return 0
elif var_name.startswith("patch_embed"):
return 0
elif var_name.startswith("enc_blocks"):
layer_id = int(var_name.split('.')[1])
return layer_id + 1
elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black
return enc_depth
elif var_name.startswith('dec_blocks'):
layer_id = int(var_name.split('.')[1])
return enc_depth + layer_id + 1
elif var_name.startswith('dec_norm'): # part of the last block
return enc_depth + dec_depth
elif any(var_name.startswith(k) for k in ['head','prediction_head']):
return enc_depth + dec_depth + 1
else:
raise NotImplementedError(var_name)
def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]):
parameter_group_names = {}
parameter_group_vars = {}
enc_depth, dec_depth = None, None
# prepare layer decay values
assert layer_decay==1.0 or 0.<layer_decay<1.
if layer_decay<1.:
enc_depth = model.enc_depth
dec_depth = model.dec_depth if hasattr(model, 'dec_blocks') else 0
num_layers = enc_depth+dec_depth
layer_decay_values = list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
# Assign weight decay values
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
# Assign layer ID for LR scaling
if layer_decay<1.:
skip_scale = False
layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth)
group_name = "layer_%d_%s" % (layer_id, group_name)
if name in no_lr_scale_list:
skip_scale = True
group_name = f'{group_name}_no_lr_scale'
else:
layer_id = 0
skip_scale = True
if group_name not in parameter_group_names:
if not skip_scale:
scale = layer_decay_values[layer_id]
else:
scale = 1.
parameter_group_names[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name]["params"].append(param)
parameter_group_names[group_name]["params"].append(name)
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
return list(parameter_group_vars.values())
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate with half-cycle cosine after warmup"""
if epoch < args.warmup_epochs:
lr = args.lr * epoch / args.warmup_epochs
else:
lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
for param_group in optimizer.param_groups:
if "lr_scale" in param_group:
param_group["lr"] = lr * param_group["lr_scale"]
else:
param_group["lr"] = lr
return lr
|