File size: 16,502 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# 
# --------------------------------------------------------
# utilitary functions for CroCo
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------

import builtins
import datetime
import os
import time
import math
import json
from collections import defaultdict, deque
from pathlib import Path
import numpy as np

import torch
import torch.distributed as dist
from torch import inf

class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None, max_iter=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable)
        space_fmt = ':' + str(len(str(len_iterable))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for it,obj in enumerate(iterable):
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len_iterable - 1:
                eta_seconds = iter_time.global_avg * (len_iterable - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len_iterable, eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len_iterable, eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
            if max_iter and it >= max_iter:
                break
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len_iterable))


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    builtin_print = builtins.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        force = force or (get_world_size() > 8)
        if is_master or force:
            now = datetime.datetime.now().time()
            builtin_print('[{}] '.format(now), end='')  # print with time stamp
            builtin_print(*args, **kwargs)

    builtins.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
    
    #### Hengyi: WORLD_SIZE is the number of GPUs used in the training
    # RANK is a unique identifier for each process in the distributed training
    # Local_rank is the GPU index of the current process
    # e.g. Consider a distributed training setup with 2 nodes, each having 4 GPUs (total WORLD_SIZE of 8):
    # Node 1:
    # Process (GPU) 0: RANK 0, LOCAL_RANK 0
    # Process (GPU) 1: RANK 1, LOCAL_RANK 1
    # Process (GPU) 2: RANK 2, LOCAL_RANK 2
    # Process (GPU) 3: RANK 3, LOCAL_RANK 3
    # Node 2:
    # Process (GPU) 0: RANK 4, LOCAL_RANK 0
    # Process (GPU) 1: RANK 5, LOCAL_RANK 1
    # Process (GPU) 2: RANK 6, LOCAL_RANK 2
    # Process (GPU) 3: RANK 7, LOCAL_RANK 3
    
    nodist = args.nodist if hasattr(args,'nodist') else False 
    if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    else:
        print('Not using distributed mode')
        setup_for_distributed(is_master=True)  # hack
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self, enabled=True):
        self._scaler = torch.cuda.amp.GradScaler(enabled=enabled)

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
    return total_norm




def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None):
    output_dir = Path(args.output_dir)
    if fname is None: fname = str(epoch)
    checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname)
    to_save = {
        'model': model_without_ddp.state_dict(),
        'optimizer': optimizer.state_dict(),
        'scaler': loss_scaler.state_dict(),
        'args': args,
        'epoch': epoch,
    }
    if best_so_far is not None: to_save['best_so_far'] = best_so_far
    print(f'>> Saving model to {checkpoint_path} ...')
    save_on_master(to_save, checkpoint_path)


def load_model(args, model_without_ddp, optimizer, loss_scaler):
    args.start_epoch = 0
    best_so_far = None
    if args.resume is not None:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.resume, map_location='cpu', check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        print("Resume checkpoint %s" % args.resume)
        model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
        args.start_epoch = checkpoint['epoch'] + 1
        optimizer.load_state_dict(checkpoint['optimizer'])
        if 'scaler' in checkpoint:
            loss_scaler.load_state_dict(checkpoint['scaler'])
        if 'best_so_far' in checkpoint:
            best_so_far = checkpoint['best_so_far']
            print(" & best_so_far={:g}".format(best_so_far))
        else:
            print("")
        print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='')
    return best_so_far

def all_reduce_mean(x):
    world_size = get_world_size()
    if world_size > 1:
        x_reduce = torch.tensor(x).cuda()
        dist.all_reduce(x_reduce)
        x_reduce /= world_size
        return x_reduce.item()
    else:
        return x

def _replace(text, src, tgt, rm=''):
    """ Advanced string replacement.
    Given a text:
    - replace all elements in src by the corresponding element in tgt
    - remove all elements in rm
    """
    if len(tgt) == 1: 
        tgt = tgt * len(src)
    assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len"
    for s,t in zip(src, tgt):
        text = text.replace(s,t)
    for c in rm:
        text = text.replace(c,'')
    return text
    
def filename( obj ):
    """ transform a python obj or cmd into a proper filename. 
     - \1 gets replaced by slash '/'
     - \2 gets replaced by comma ','
    """
    if not isinstance(obj, str): 
        obj = repr(obj)
    obj = str(obj).replace('()','')
    obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"')
    assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj
    return obj

def _get_num_layer_for_vit(var_name, enc_depth, dec_depth):
    if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"):
        return 0
    elif var_name.startswith("patch_embed"):
        return 0
    elif var_name.startswith("enc_blocks"):
        layer_id = int(var_name.split('.')[1])
        return layer_id + 1
    elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black
        return enc_depth
    elif var_name.startswith('dec_blocks'):
        layer_id = int(var_name.split('.')[1])
        return enc_depth + layer_id + 1
    elif var_name.startswith('dec_norm'): # part of the last block
        return enc_depth + dec_depth
    elif any(var_name.startswith(k) for k in ['head','prediction_head']):
        return enc_depth + dec_depth + 1
    else:
        raise NotImplementedError(var_name)

def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]):
    parameter_group_names = {}
    parameter_group_vars = {}
    enc_depth, dec_depth = None, None
    # prepare layer decay values 
    assert layer_decay==1.0 or 0.<layer_decay<1.
    if layer_decay<1.:
        enc_depth = model.enc_depth
        dec_depth = model.dec_depth if hasattr(model, 'dec_blocks') else 0
        num_layers = enc_depth+dec_depth
        layer_decay_values = list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))
        
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights

        # Assign weight decay values
        if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
            group_name = "no_decay"
            this_weight_decay = 0.
        else:
            group_name = "decay"
            this_weight_decay = weight_decay

        # Assign layer ID for LR scaling
        if layer_decay<1.:
            skip_scale = False
            layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth)
            group_name = "layer_%d_%s" % (layer_id, group_name)
            if name in no_lr_scale_list:
                skip_scale = True
                group_name = f'{group_name}_no_lr_scale'
        else:
            layer_id = 0
            skip_scale = True

        if group_name not in parameter_group_names:
            if not skip_scale:
                scale = layer_decay_values[layer_id]
            else:
                scale = 1.

            parameter_group_names[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale
            }
            parameter_group_vars[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale
            }

        parameter_group_vars[group_name]["params"].append(param)
        parameter_group_names[group_name]["params"].append(name)
    print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
    return list(parameter_group_vars.values())



def adjust_learning_rate(optimizer, epoch, args):
    """Decay the learning rate with half-cycle cosine after warmup"""
    
    if epoch < args.warmup_epochs:
        lr = args.lr * epoch / args.warmup_epochs 
    else:
        lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
            (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
            
    for param_group in optimizer.param_groups:
        if "lr_scale" in param_group:
            param_group["lr"] = lr * param_group["lr_scale"]
        else:
            param_group["lr"] = lr
            
    return lr