Spaces:
Running
on
L40S
Running
on
L40S
File size: 12,322 Bytes
d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c d1dbe71 e66346c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import numpy as np
import open3d as o3d
import torch
from tqdm import tqdm
import torch.nn.functional as F
def pts2normal(pts):
h, w, _ = pts.shape
# Compute differences in x and y directions
dx = torch.cat([pts[2:, 1:-1] - pts[:-2, 1:-1]], dim=0)
dy = torch.cat([pts[1:-1, 2:] - pts[1:-1, :-2]], dim=1)
# Compute normal vectors using cross product
normal_map = F.normalize(torch.cross(dx, dy, dim=-1), dim=-1)
# Create padded normal map
padded_normal_map = torch.zeros_like(pts)
padded_normal_map[1:-1, 1:-1, :] = normal_map
# Pad the borders
padded_normal_map[0, 1:-1, :] = normal_map[0, :, :] # Top edge
padded_normal_map[-1, 1:-1, :] = normal_map[-1, :, :] # Bottom edge
padded_normal_map[1:-1, 0, :] = normal_map[:, 0, :] # Left edge
padded_normal_map[1:-1, -1, :] = normal_map[:, -1, :] # Right edge
# Pad the corners
padded_normal_map[0, 0, :] = normal_map[0, 0, :] # Top-left corner
padded_normal_map[0, -1, :] = normal_map[0, -1, :] # Top-right corner
padded_normal_map[-1, 0, :] = normal_map[-1, 0, :] # Bottom-left corner
padded_normal_map[-1, -1, :] = normal_map[-1, -1, :] # Bottom-right corner
return padded_normal_map
def point2mesh(pcd, depth=8, density_threshold=0.1, clean_mesh=True):
print("\nPerforming Poisson surface reconstruction...")
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=depth, width=0, scale=1.1, linear_fit=False)
print(f"Reconstructed mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles")
# Normalize densities
densities = np.asarray(densities)
densities = (densities - densities.min()) / (densities.max() - densities.min())
# Remove low density vertices
print("\nPruning low-density vertices...")
vertices_to_remove = densities < np.quantile(densities, density_threshold)
mesh.remove_vertices_by_mask(vertices_to_remove)
print(f"Pruned mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles")
if clean_mesh:
print("\nCleaning the mesh...")
mesh.remove_degenerate_triangles()
mesh.remove_duplicated_triangles()
mesh.remove_duplicated_vertices()
mesh.remove_non_manifold_edges()
print(f"Final cleaned mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles")
mesh.compute_triangle_normals()
return mesh
def combine_and_clean_point_clouds(pcds, voxel_size):
"""
Combine, downsample, and clean a list of point clouds.
Parameters:
pcds (list): List of open3d.geometry.PointCloud objects to be processed.
voxel_size (float): The size of the voxel for downsampling.
Returns:
o3d.geometry.PointCloud: The cleaned and combined point cloud.
"""
print("\nCombining point clouds...")
pcd_combined = o3d.geometry.PointCloud()
for p3d in pcds:
pcd_combined += p3d
print("\nDownsampling the combined point cloud...")
pcd_combined = pcd_combined.voxel_down_sample(voxel_size)
print(f"Downsampled from {len(pcd_combined.points)} to {len(pcd_combined.points)} points")
print("\nCleaning the combined point cloud...")
cl, ind = pcd_combined.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
pcd_cleaned = pcd_combined.select_by_index(ind)
print(f"Cleaned point cloud contains {len(pcd_cleaned.points)} points.")
print(f"Removed {len(pcd_combined.points) - len(pcd_cleaned.points)} outlier points.")
return pcd_cleaned
def improved_multiway_registration(pcds, descriptors=None, voxel_size=0.05,
max_correspondence_distance_coarse=None, max_correspondence_distance_fine=None,
overlap=5, quadratic_overlap=False, use_colored_icp=False):
if max_correspondence_distance_coarse is None:
max_correspondence_distance_coarse = voxel_size * 1.5
if max_correspondence_distance_fine is None:
max_correspondence_distance_fine = voxel_size * 0.15
def pairwise_registration(source, target, use_colored_icp, max_correspondence_distance_coarse, max_correspondence_distance_fine):
current_transformation = np.identity(4)
try:
if use_colored_icp:
icp_fine = o3d.pipelines.registration.registration_colored_icp(
source, target, max_correspondence_distance_fine, current_transformation,
o3d.pipelines.registration.TransformationEstimationForColoredICP(),
o3d.pipelines.registration.ICPConvergenceCriteria(relative_fitness=1e-6,
relative_rmse=1e-6,
max_iteration=100))
else:
icp_fine = o3d.pipelines.registration.registration_icp(
source, target, max_correspondence_distance_fine,
current_transformation,
o3d.pipelines.registration.TransformationEstimationPointToPlane())
fitness = icp_fine.fitness
FITNESS_THRESHOLD = 0.01
if fitness >= FITNESS_THRESHOLD:
current_transformation = icp_fine.transformation
information_icp = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
source, target, max_correspondence_distance_fine,
current_transformation)
return current_transformation, information_icp, True
else:
print(f"Registration failed. Fitness {fitness} is below threshold {FITNESS_THRESHOLD}")
return None, None, False
except RuntimeError as e:
print(f" ICP registration failed: {str(e)}")
return None, None, False
def detect_loop_closure(descriptors, min_interval=3, similarity_threshold=0.9):
n_pcds = len(descriptors)
loop_edges = []
for i in range(n_pcds):
for j in range(i + min_interval, n_pcds):
similarity = torch.dot(descriptors[i], descriptors[j])
if similarity > similarity_threshold:
loop_edges.append((i, j))
return loop_edges
def generate_pairs(n_pcds, overlap, quadratic_overlap):
pairs = []
for i in range(n_pcds - 1):
for j in range(i + 1, min(i + overlap + 1, n_pcds)):
pairs.append((i, j))
if quadratic_overlap:
q = 2**(j-i)
if q > overlap and i + q < n_pcds:
pairs.append((i, i + q))
return pairs
def full_registration(pcds_down, pairs, loop_edges):
pose_graph = o3d.pipelines.registration.PoseGraph()
n_pcds = len(pcds_down)
for i in range(n_pcds):
pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(np.identity(4)))
print("\nPerforming pairwise registration:")
for source_id, target_id in tqdm(pairs):
transformation_icp, information_icp, success = pairwise_registration(
pcds_down[source_id], pcds_down[target_id], use_colored_icp,
max_correspondence_distance_coarse, max_correspondence_distance_fine)
if success:
uncertain = abs(target_id - source_id) == 1
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(source_id,
target_id,
transformation_icp,
information_icp,
uncertain=uncertain))
else:
print(f" Skipping edge between {source_id} and {target_id} due to ICP failure")
# Add loop closure edges
print("\nAdding loop closure edges:")
for source_id, target_id in tqdm(loop_edges):
transformation_icp, information_icp, success = pairwise_registration(
pcds_down[source_id], pcds_down[target_id], use_colored_icp,
max_correspondence_distance_coarse, max_correspondence_distance_fine)
if success:
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(source_id,
target_id,
transformation_icp,
information_icp,
uncertain=True))
else:
print(f" Skipping loop closure edge between {source_id} and {target_id} due to ICP failure")
return pose_graph
print("\n--- Improved Multiway Registration Process ---")
print(f"Number of point clouds: {len(pcds)}")
print(f"Voxel size: {voxel_size}")
print(f"Max correspondence distance (coarse): {max_correspondence_distance_coarse}")
print(f"Max correspondence distance (fine): {max_correspondence_distance_fine}")
print(f"Overlap: {overlap}")
print(f"Quadratic overlap: {quadratic_overlap}")
print("\nPreprocessing point clouds...")
pcds_down = pcds
print(f"Preprocessing complete. {len(pcds_down)} point clouds processed.")
print("\nGenerating initial graph pairs...")
pairs = generate_pairs(len(pcds), overlap, quadratic_overlap)
print(f"Generated {len(pairs)} pairs for initial graph.")
if descriptors is None:
print("\nNo descriptors provided. Skipping loop closure detection.")
loop_edges = []
else:
print(descriptors[0].shape)
print("\nDetecting loop closures...")
loop_edges = detect_loop_closure(descriptors)
print(f"Detected {len(loop_edges)} loop closures.")
print("\nPerforming full registration...")
pose_graph = full_registration(pcds_down, pairs, loop_edges)
print("\nOptimizing PoseGraph...")
option = o3d.pipelines.registration.GlobalOptimizationOption(
max_correspondence_distance=max_correspondence_distance_fine,
edge_prune_threshold=0.25,
reference_node=0)
o3d.pipelines.registration.global_optimization(
pose_graph,
o3d.pipelines.registration.GlobalOptimizationLevenbergMarquardt(),
o3d.pipelines.registration.GlobalOptimizationConvergenceCriteria(),
option)
# Count edges for each node
edge_count = {i: 0 for i in range(len(pcds))}
for edge in pose_graph.edges:
edge_count[edge.source_node_id] += 1
edge_count[edge.target_node_id] += 1
# Filter nodes with more than 3 edges
valid_nodes = [count > 3 for count in edge_count.values()]
print("\nTransforming and combining point clouds...")
pcd_combined = o3d.geometry.PointCloud()
for point_id, is_valid in enumerate(valid_nodes):
if is_valid:
pcds[point_id].transform(pose_graph.nodes[point_id].pose)
pcd_combined += pcds[point_id]
else:
print(f"Skipping point cloud {point_id} as it has {edge_count[point_id]} edges (<=3)")
print("\nDownsampling the combined point cloud...")
# pcd_combined.orient_normals_consistent_tangent_plane(k=30)
pcd_combined = pcd_combined.voxel_down_sample(voxel_size * 0.1)
print(f"Downsampled from {len(pcd_combined.points)} to {len(pcd_combined.points)} points")
print("\nCleaning the combined point cloud...")
cl, ind = pcd_combined.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
pcd_cleaned = pcd_combined.select_by_index(ind)
print(f"Cleaned point cloud contains {len(pcd_cleaned.points)} points.")
print(f"Removed {len(pcd_combined.points) - len(pcd_cleaned.points)} outlier points.")
print("\nMultiway registration complete.")
print(f"Included {len(valid_nodes)} out of {len(pcds)} point clouds (with >3 edges).")
return pcd_cleaned, pose_graph, valid_nodes |