File size: 11,063 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import time
import torch
import argparse
import numpy as np
import open3d as o3d
import os.path as osp
from dust3r.losses import L21
from spann3r.model import Spann3R
from dust3r.inference import inference
from dust3r.utils.geometry import geotrf
from dust3r.image_pairs import make_pairs
from spann3r.loss import Regr3D_t_ScaleShiftInv
from spann3r.datasets import *
from torch.utils.data import DataLoader
from spann3r.tools.eval_recon import accuracy, completion

def get_args_parser():
    parser = argparse.ArgumentParser('Spann3R evaluation', add_help=False)
    parser.add_argument('--exp_path', type=str, help='Path to experiment folder', default='./checkpoints')
    parser.add_argument('--exp_name', type=str, default='ckpt_best', help='Path to experiment folder')
    parser.add_argument('--ckpt', type=str, default='spann3r.pth', help='ckpt name')
    parser.add_argument('--scenegraph_type', type=str, default='complete', help='scenegraph type')
    parser.add_argument('--offline', action='store_true', help='offline reconstruction')
    parser.add_argument('--device', type=str, default='cuda:0', help='device')
    parser.add_argument('--conf_thresh', type=float, default=0.0, help='confidence threshold')

    return parser
    

def main(args):
    workspace = args.exp_path
    ckpt_path = osp.join(workspace, args.ckpt)
    if not osp.exists(workspace):
        raise FileNotFoundError(f"Workspace {workspace} not found")
    
    exp_path = osp.join(workspace, args.exp_name)
    os.makedirs(exp_path, exist_ok=True)

    datasets_all = {
        '7scenes': SevenScenes(split='test', ROOT="./data/7scenes",
                                resolution=224, num_seq=1, full_video=True, kf_every=20),
        'NRGBD': NRGBD(split='test', ROOT="./data/neural_rgbd", 
                           resolution=224, num_seq=1, full_video=True, kf_every=40),
        'DTU': DTU(split='test', ROOT="./data/dtu_test",
                   resolution=224, num_seq=1, full_video=True, kf_every=5),
    }
    model = Spann3R(dus3r_name='./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth', 
                use_feat=False).to(args.device)
    
    model.load_state_dict(torch.load(ckpt_path)['model'])
    model.eval()    


    criterion = Regr3D_t_ScaleShiftInv(L21, norm_mode=False, gt_scale=True)

    with torch.no_grad():
        for name_data, dataset in datasets_all.items():
            save_path = osp.join(exp_path, name_data)
            if args.offline:
                save_path = osp.join(save_path + '_offline')
            os.makedirs(save_path, exist_ok=True)

            log_file = osp.join(save_path, 'logs.txt')
            os.makedirs(save_path, exist_ok=True)

            acc_all = 0
            acc_all_med = 0
            comp_all = 0
            comp_all_med = 0
            nc1_all = 0
            nc1_all_med = 0
            nc2_all = 0
            nc2_all_med = 0

            fps_all = []
            time_all = []

            dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)

            for i, batch in enumerate(dataloader):

                for view in batch:
                    for name in 'img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres'.split():  # pseudo_focal
                        if name not in view:
                            continue
                        view[name] = view[name].to(args.device, non_blocking=True)


                print(f'Started reconstruction for {name_data} {i+1}/{len(dataloader)}')
                
                if args.offline:
                    imgs_all = []
                    for j, view in enumerate(batch):
                        img = view['img']
                        shape1 = [img.size()[::-1]]

                        imgs_all.append(
                            dict(
                                img=img,
                                true_shape=torch.tensor(img.shape[2:]).unsqueeze(0),
                                idx=j,
                                instance=str(j)
                            )
                        )
                    start = time.time()
                    pairs = make_pairs(imgs_all, scene_graph=args.scenegraph_type, prefilter=None, symmetrize=True)
                    output = inference(pairs, model.dust3r, args.device, batch_size=2, verbose=True)
                    preds, preds_all, idx_used = model.offline_reconstruction(batch, output) 
                    end = time.time()
                    ordered_batch = [batch[i] for i in idx_used]
                else:
                    start = time.time()
                    preds, preds_all = model.forward(batch) 
                    end = time.time()
                    ordered_batch = batch

                fps = len(batch) / (end - start)                

                print(f'Finished reconstruction for {name_data} {i+1}/{len(dataloader)}, FPS: {fps:.2f}')

                fps_all.append(fps)
                time_all.append(end - start)
                

                # Evaluation
                print(f'Evaluation for {name_data} {i+1}/{len(dataloader)}')
                gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = criterion.get_all_pts3d_t(ordered_batch, preds_all)
                pred_scale, gt_scale, pred_shift_z, gt_shift_z  = monitoring['pred_scale'], monitoring['gt_scale'], monitoring['pred_shift_z'], monitoring['gt_shift_z']
                
                in_camera1 = None
                pts_all = []
                pts_gt_all = []
                images_all = []
                masks_all = []
                conf_all = []

                for j, view in enumerate(ordered_batch):
                    if in_camera1 is None:
                        in_camera1 = view['camera_pose'][0].cpu()
                    
                    image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
                    mask = view['valid_mask'].cpu().numpy()[0]

                    # pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
                    pts = pred_pts[0][j].cpu().numpy()[0] if j < len(pred_pts[0]) else pred_pts[1][-1].cpu().numpy()[0]
                    conf = preds[j]['conf'][0].cpu().data.numpy()

                    pts_gt = gt_pts[j].detach().cpu().numpy()[0]

                    #### Align predicted 3D points to the ground truth 
                    pts[..., -1] += gt_shift_z.cpu().numpy().item()
                    pts = geotrf(in_camera1, pts)

                    pts_gt[..., -1] += gt_shift_z.cpu().numpy().item()
                    pts_gt = geotrf(in_camera1, pts_gt)

                    images_all.append((image[None, ...] + 1.0)/2.0)
                    pts_all.append(pts[None, ...])
                    pts_gt_all.append(pts_gt[None, ...])
                    masks_all.append(mask[None, ...])
                    conf_all.append(conf[None, ...])
                
                images_all = np.concatenate(images_all, axis=0)
                pts_all = np.concatenate(pts_all, axis=0)
                pts_gt_all = np.concatenate(pts_gt_all, axis=0)
                masks_all = np.concatenate(masks_all, axis=0)
                conf_all = np.concatenate(conf_all, axis=0)

                scene_id = view['label'][0].rsplit('/', 1)[0]

                save_params = {}

                save_params['images_all'] = images_all
                save_params['pts_all'] = pts_all
                save_params['pts_gt_all'] = pts_gt_all
                save_params['masks_all'] = masks_all
                save_params['conf_all'] = conf_all

                np.save(os.path.join(save_path, f"{scene_id.replace('/', '_')}.npy"), save_params)


                if 'DTU' in name_data:
                    threshold = 100
                else:
                    threshold = 0.1

                
                pts_all_masked = pts_all[masks_all > 0]
                pts_gt_all_masked = pts_gt_all[masks_all > 0]
                images_all_masked = images_all[masks_all > 0]

                pcd = o3d.geometry.PointCloud()
                pcd.points = o3d.utility.Vector3dVector(pts_all_masked.reshape(-1, 3))
                pcd.colors = o3d.utility.Vector3dVector(images_all_masked.reshape(-1, 3))
                o3d.io.write_point_cloud(os.path.join(save_path, f"{scene_id.replace('/', '_')}-mask.ply"), pcd)

                pcd_gt = o3d.geometry.PointCloud()
                pcd_gt.points = o3d.utility.Vector3dVector(pts_gt_all_masked.reshape(-1, 3))
                pcd_gt.colors = o3d.utility.Vector3dVector(images_all_masked.reshape(-1, 3) / 255.0)
                o3d.io.write_point_cloud(os.path.join(save_path, f"{scene_id.replace('/', '_')}-gt.ply"), pcd_gt)

                trans_init = np.eye(4)
                reg_p2p = o3d.pipelines.registration.registration_icp(
                    pcd, pcd_gt, threshold, trans_init,
                    o3d.pipelines.registration.TransformationEstimationPointToPoint())
                
                transformation = reg_p2p.transformation
                            
                pcd = pcd.transform(transformation)
                pcd.estimate_normals()
                pcd_gt.estimate_normals()

                gt_normal = np.asarray(pcd_gt.normals)
                pred_normal = np.asarray(pcd.normals)

                acc, acc_med, nc1, nc1_med = accuracy(pcd_gt.points, pcd.points, gt_normal, pred_normal)
                comp, comp_med, nc2, nc2_med = completion(pcd_gt.points, pcd.points, gt_normal, pred_normal)
                

                print(f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}", file=open(log_file, "a"))

                acc_all += acc
                comp_all += comp
                nc1_all += nc1
                nc2_all += nc2

                acc_all_med += acc_med
                comp_all_med += comp_med
                nc1_all_med += nc1_med
                nc2_all_med += nc2_med


                # release cuda memory
                torch.cuda.empty_cache()

                print(f"Finished evaluation for {name_data} {i+1}/{len(dataloader)}")



                # Get depth from pcd and run TSDFusion
                
            
            print(f"Dataset: {name_data}, Accuracy: {acc_all/len(dataloader)}, Completion: {comp_all/len(dataloader)}, NC1: {nc1_all/len(dataloader)}, NC2: {nc2_all/len(dataloader)} - Acc_med: {acc_all_med/len(dataloader)}, Comp_med: {comp_all_med/len(dataloader)}, NC1_med: {nc1_all_med/len(dataloader)}, NC2_med: {nc2_all_med/len(dataloader)}", file=open(log_file, "a"))
            print(f"Average fps: {sum(fps) / len(fps)}, Average time: {sum(time_all) / len(time_all)}", file=open(log_file, "a"))
                


if __name__ == '__main__':
    parser = get_args_parser()
    args = parser.parse_args()
    main(args)