File size: 19,143 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import os
import sys
import math
import json
import time
import torch
import argparse
import datetime
import numpy as np
import torch.backends.cudnn as cudnn

import croco.utils.misc as misc 

from pathlib import Path
from typing import Sized
from shutil import copyfile
from collections import defaultdict
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter


from spann3r.model import Spann3R
from dust3r.losses import L21
from spann3r.datasets import *
from spann3r.loss import Regr3D_t, ConfLoss_t, Regr3D_t_ScaleShiftInv
from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler


def get_args_parser():
    parser = argparse.ArgumentParser('Spann3R training', add_help=False)
    parser.add_argument('--model', default="Spann3R(dus3r_name='./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth', use_feat=False, mem_pos_enc=False)",
                        type=str, help="string containing the model to build")
    parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint')
    
    # Loss
    parser.add_argument('--train_criterion', 
                        default="ConfLoss_t(Regr3D_t(L21, norm_mode='avg_dis', fix_first=False), alpha=0.4)",
                        type=str, help="train criterion")
    parser.add_argument('--test_criterion', default="Regr3D_t_ScaleShiftInv(L21, gt_scale=True)")

    # Datasets
    parser.add_argument('--train_dataset', 
                        default= "10000 @ Co3d(split='train', ROOT='./data/co3d_preprocessed_50', resolution=224, num_frames=5, mask_bg='rand', transform=ColorJitter) + 10000 @ Co3d(split='train', ROOT='./data/co3d_preprocessed_50', resolution=224, num_frames=5, mask_bg='rand', transform=ColorJitter, use_comb=False) + 10000 @ BlendMVS(split='train', ROOT='./data/blendmvg', resolution=224) + 10000 @ Scannetpp(split='train', ROOT='./data/scannetpp', resolution=224, transform=ColorJitter) + 10000 @ habitat(split='train', ROOT='./data/habitat_5frame', resolution=224, transform=ColorJitter) + 10000 @ Scannet(split='train', ROOT='./data/scannet', resolution=224, transform=ColorJitter, max_thresh=50) + 10000 @ ArkitScene(split='train', ROOT='./data/arkit_lowres', resolution=224, transform=ColorJitter, max_thresh=100)",
                        required=False, type=str, help="training set")
    parser.add_argument('--test_dataset', 
                        default="Scannetpp(split='val', ROOT='./data/scannetpp', resolution=224, num_seq=1, kf_every=10, seed=777, full_video=True) + 1000 @ Co3d(split='test', ROOT='./data/co3d_preprocessed_50', resolution=224, num_frames=5, mask_bg=False, seed=777)", 
                        type=str, help="testing set")
    
     # Exp
    parser.add_argument('--seed', default=0, type=int, help="Random seed")
    
    # Training
    parser.add_argument('--batch_size', default=2, type=int,
                        help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
    parser.add_argument('--batch_size_test', default=1, type=int,
                        help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
    parser.add_argument('--accum_iter', default=1, type=int,
                        help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)")
    parser.add_argument('--epochs', default=120, type=int, help="Maximum number of epochs for the scheduler")
    
    parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)")
    parser.add_argument('--lr', type=float, default=5e-5, metavar='LR', help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--min_lr', type=float, default=1e-06, metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')
    parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N', help='epochs to warmup LR')

    parser.add_argument('--amp', type=int, default=0,
                        choices=[0, 1], help="Use Automatic Mixed Precision for pretraining")
    
    # others
    parser.add_argument('--num_workers', default=2, type=int)
    parser.add_argument('--num_workers_test', default=0, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')

    parser.add_argument('--eval_freq', type=int, default=1, help='Test loss evaluation frequency')
    parser.add_argument('--save_freq', default=1, type=int,
                        help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth')
    parser.add_argument('--keep_freq', default=5, type=int,
                        help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth')
    parser.add_argument('--print_freq', default=20, type=int,
                        help='frequence (number of iterations) to print infos while training')
    
    parser.add_argument('--alpha_c2f', type=int, default=1, help='use alpha c2f')
    
    # output dir 
    parser.add_argument('--output_dir', default='./output/all_alpha04_lr05', type=str, help="path where to save the output")
    
    return parser
    
@torch.no_grad()
def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                   data_loader: Sized, device: torch.device, epoch: int,
                   args, log_writer=None, prefix='test'):

    model.eval()
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9))
    header = 'Test Epoch: [{}]'.format(epoch)

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
        data_loader.dataset.set_epoch(epoch)
    if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
        data_loader.sampler.set_epoch(epoch)
    
    save_path = os.path.join(args.output_dir, f'eval_{epoch}')
        
    os.makedirs(save_path, exist_ok=True)

    for i, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
        for view in batch:
            for name in 'img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres'.split():  # pseudo_focal
                if name not in view:
                    continue
                view[name] = view[name].to(device, non_blocking=True)
        
        
        preds, preds_all = model.forward(batch)
        
        if i < 100:
            images_all = []
            pts_all = []
            for j, view in enumerate(batch):
                img_idx = 0
                mask = view['depthmap'][img_idx:img_idx+1].cpu().numpy()!=0
                image = view['img'][img_idx:img_idx+1].permute(0, 2, 3, 1).cpu().numpy()[mask].reshape(-1, 3)
                
                pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][img_idx:img_idx+1].detach().cpu().numpy()
                pts = pts[mask].reshape(-1, 3)
                
                images_all.append(image)
                pts_all.append(pts)
            images_all = np.concatenate(images_all, axis=0)
            


            pts_all = np.concatenate(pts_all, axis=0)
            # create open3d point cloud and save
            import open3d as o3d
            pcd = o3d.geometry.PointCloud()
            pcd.points = o3d.utility.Vector3dVector(pts_all.reshape(-1, 3))
            pcd.colors = o3d.utility.Vector3dVector((images_all.reshape(-1, 3)+1.0)/2.0)
            o3d.io.write_point_cloud(os.path.join(save_path, view['dataset'][0]+f"_idx_{i}.ply"), pcd)
            
        
        loss, loss_details, loss_factor = criterion.compute_frame_loss(batch, preds_all)
        loss_value = float(loss)
        
        metric_logger.update(loss=float(loss_value), **loss_details)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)

    aggs = [('avg', 'global_avg'), ('med', 'median')]
    results = {f'{k}_{tag}': getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs}

    if log_writer is not None:
        for name, val in results.items():
            log_writer.add_scalar(prefix+'_'+name, val, 1000*epoch)

    return results

def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Sized, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler,
                    args,
                    log_writer=None):
    assert torch.backends.cuda.matmul.allow_tf32 == True

    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    accum_iter = args.accum_iter

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
        data_loader.dataset.set_epoch(epoch)
    if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
        data_loader.sampler.set_epoch(epoch)
        
    epoch_ratio = epoch/args.epochs
    if epoch_ratio < 0.75:
        active_ratio = min(1, epoch/args.epochs*2.0)
    else:
        active_ratio = max(0.5, 1 - (epoch_ratio - 0.75) / 0.25)
    data_loader.dataset.set_ratio(active_ratio)
    #print(f"active thresh: {data_loader.datasets.dataset.active_thresh}")
    
    
    optimizer.zero_grad()

    for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
        epoch_f = epoch + data_iter_step / len(data_loader)

        # we use a per iteration (instead of per epoch) lr scheduler
        if data_iter_step % accum_iter == 0:
            misc.adjust_learning_rate(optimizer, epoch_f, args)
        
        for view in batch:
            for name in 'img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres'.split():  # pseudo_focal
                if name not in view:
                    continue
                view[name] = view[name].to(device, non_blocking=True)
        
        
        preds, preds_all = model.forward(batch)
        loss, loss_details, loss_factor = criterion.compute_frame_loss(batch, preds_all)
        loss += loss_factor     

        loss_value = float(loss)

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value), force=True)
            sys.exit(1)

        loss /= accum_iter
        norm = loss_scaler(loss, optimizer, parameters=model.parameters(),
                    update_grad=(data_iter_step + 1) % accum_iter == 0, clip_grad=1.0) # 
        
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        del loss
        del batch

        lr = optimizer.param_groups[0]["lr"]
        metric_logger.update(epoch=epoch_f)
        metric_logger.update(lr=lr)
        metric_logger.update(loss=loss_value, **loss_details)

        if (data_iter_step + 1) % accum_iter == 0 and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0:
            loss_value_reduce = misc.all_reduce_mean(loss_value)  # MUST BE EXECUTED BY ALL NODES
            if log_writer is None:
                continue
            """ We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int(epoch_f * 1000)
            log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
            log_writer.add_scalar('train_lr', lr, epoch_1000x)
            log_writer.add_scalar('train_iter', epoch_1000x, epoch_1000x)
            log_writer.add_scalar('active_ratio', active_ratio, epoch_1000x)
            for name, val in loss_details.items():
                log_writer.add_scalar('train_'+name, val, epoch_1000x)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


def train(args):
    misc.init_distributed_mode(args)
    global_rank = misc.get_rank()
    world_size = misc.get_world_size()

    print("output_dir: "+args.output_dir)
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    
    # auto resume
    last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth')
    args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None
    
    print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
    print("{}".format(args).replace(', ', ',\n'))
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)
    
    # fix the seed
    seed = args.seed + misc.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    cudnn.benchmark = True

    print('Building train dataset {:s}'.format(args.train_dataset))
    #  dataset and loader
    data_loader_train = build_dataset(args.train_dataset, args.batch_size, args.num_workers, test=False)

    data_loader_test = {dataset.split('(')[0]: build_dataset(dataset, args.batch_size_test, args.num_workers_test, test=True)
                        for dataset in args.test_dataset.split('+')}
    
    print('Loading model: {:s}'.format(args.model))
    model = eval(args.model)
    
    print(f'>> Creating train criterion = {args.train_criterion}')
    train_criterion = eval(args.train_criterion).to(device)
    test_criterion = eval(args.test_criterion).to(device)

    alpha_init = train_criterion.alpha
    
    model.to(device)
    model_without_ddp = model
    print("Model = %s" % str(model_without_ddp))

    if args.pretrained and not args.resume:
        print('Loading pretrained: ', args.pretrained)
        ckpt = torch.load(args.pretrained, map_location=device)
        print(model.load_state_dict(ckpt['model'], strict=False))
        del ckpt  # in case it occupies memory
    
    
    eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
    if args.lr is None:  # only base_lr is specified
        args.lr = args.blr * eff_batch_size / 256
    print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
    print("actual lr: %.2e" % args.lr)
    print("accumulate grad iterations: %d" % args.accum_iter)
    print("effective batch size: %d" % eff_batch_size)
    
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True)
        model_without_ddp = model.module
    
    param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay)
    optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
    print(optimizer)
    
    loss_scaler = NativeScaler()

    def write_log_stats(epoch, train_stats, test_stats):
        if misc.is_main_process():
            if log_writer is not None:
                log_writer.flush()

            log_stats = dict(epoch=epoch, **{f'train_{k}': v for k, v in train_stats.items()})
            for test_name in data_loader_test:
                if test_name not in test_stats:
                    continue
                log_stats.update({test_name+'_'+k: v for k, v in test_stats[test_name].items()})

            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")
    
    def save_model(epoch, fname, best_so_far):
        misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer,
                        loss_scaler=loss_scaler, epoch=epoch, fname=fname, best_so_far=best_so_far)
    
    best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp,
                                  optimizer=optimizer, loss_scaler=loss_scaler)
    if best_so_far is None:
        best_so_far = float('inf')
    if global_rank == 0 and args.output_dir is not None:
        log_writer = SummaryWriter(log_dir=args.output_dir)
    else:
        log_writer = None
    
    file_path_all =[ './']
        
    os.makedirs(os.path.join(args.output_dir, 'recording'), exist_ok=True)
    
    for file_path in file_path_all:
        cur_dir = os.path.join(args.output_dir, 'recording', file_path)
        os.makedirs(cur_dir, exist_ok=True)
        
        files = os.listdir(file_path)
        for f_name in files:
            if f_name[-3:] == '.py':
                copyfile(os.path.join(file_path, f_name), os.path.join(cur_dir, f_name))

    print(f"Start training for {args.epochs} epochs")

    start_time = time.time()
    train_stats = test_stats = {}
    for epoch in range(args.start_epoch, args.epochs+1):
        
        # TODO: Save last check point
        if epoch > args.start_epoch:
            if args.save_freq and epoch % args.save_freq == 0 or epoch == args.epochs:
                save_model(epoch-1, 'last', best_so_far)
        
        # Test on multiple datasets
        new_best = False
        if (epoch > 0 and args.eval_freq > 0 and epoch % args.eval_freq == 0):
            test_stats = {}
            for test_name, testset in data_loader_test.items():
                stats = test_one_epoch(model, test_criterion, testset,
                                       device, epoch, log_writer=log_writer, args=args, prefix=test_name)
                test_stats[test_name] = stats

                # Save best of all
                if stats['loss_med'] < best_so_far:
                    best_so_far = stats['loss_med']
                    new_best = True

        # Save more stuff
        write_log_stats(epoch, train_stats, test_stats)
        
        if epoch > args.start_epoch:
            if args.keep_freq and epoch % args.keep_freq == 0:
                save_model(epoch-1, str(epoch), best_so_far)
            if new_best:
                save_model(epoch-1, 'best', best_so_far)
            
        if epoch >= args.epochs:
            break 

        if args.alpha_c2f:
            train_criterion.alpha = alpha_init - 0.2 * max((epoch - 0.5 * args.epochs) / (0.5 * args.epochs), 0)
            print('Update alpha to', train_criterion.alpha)
        
        train_stats = train_one_epoch(
            model, train_criterion, data_loader_train,
            optimizer, device, epoch, loss_scaler,
            log_writer=log_writer,
            args=args)
    
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))