Spaces:
Sleeping
Sleeping
File size: 19,298 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
import os
import numpy as np
import quaternion
import habitat_sim
import json
from sklearn.neighbors import NearestNeighbors
import cv2
# OpenCV to habitat camera convention transformation
R_OPENCV2HABITAT = np.stack((habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0)
R_HABITAT2OPENCV = R_OPENCV2HABITAT.T
DEG2RAD = np.pi / 180
def compute_camera_intrinsics(height, width, hfov):
f = width/2 / np.tan(hfov/2 * np.pi/180)
cu, cv = width/2, height/2
return f, cu, cv
def compute_camera_pose_opencv_convention(camera_position, camera_orientation):
R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT
t_cam2world = np.asarray(camera_position)
return R_cam2world, t_cam2world
def compute_pointmap(depthmap, hfov):
""" Compute a HxWx3 pointmap in camera frame from a HxW depth map."""
height, width = depthmap.shape
f, cu, cv = compute_camera_intrinsics(height, width, hfov)
# Cast depth map to point
z_cam = depthmap
u, v = np.meshgrid(range(width), range(height))
x_cam = (u - cu) / f * z_cam
y_cam = (v - cv) / f * z_cam
X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1)
return X_cam
def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation):
"""Return a 3D point cloud corresponding to valid pixels of the depth map"""
R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_position, camera_rotation)
X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov)
valid_mask = (X_cam[:,:,2] != 0.0)
X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()]
X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3)
return X_world
def compute_pointcloud_overlaps_scikit(pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False, adaptive_threshold=False):
"""
Compute 'overlapping' metrics based on a distance threshold between two point clouds.
"""
if adaptive_threshold:
distances1 = NearestNeighbors(n_neighbors=2).fit(pointcloud1).kneighbors(pointcloud1)[0][:, 1]
distances2 = NearestNeighbors(n_neighbors=2).fit(pointcloud2).kneighbors(pointcloud2)[0][:, 1]
distance_threshold = (np.mean(distances1) + np.mean(distances2)) / 2
nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud2)
distances, indices = nbrs.kneighbors(pointcloud1)
intersection1 = np.count_nonzero(distances.flatten() < distance_threshold)
data = {"intersection1": intersection1,
"size1": len(pointcloud1)}
if compute_symmetric:
nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud1)
distances, indices = nbrs.kneighbors(pointcloud2)
intersection2 = np.count_nonzero(distances.flatten() < distance_threshold)
data["intersection2"] = intersection2
data["size2"] = len(pointcloud2)
return data
def _append_camera_parameters(observation, hfov, camera_location, camera_rotation):
"""
Add camera parameters to the observation dictionnary produced by Habitat-Sim
In-place modifications.
"""
R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_location, camera_rotation)
height, width = observation['depth'].shape
f, cu, cv = compute_camera_intrinsics(height, width, hfov)
K = np.asarray([[f, 0, cu],
[0, f, cv],
[0, 0, 1.0]])
observation["camera_intrinsics"] = K
observation["t_cam2world"] = t_cam2world
observation["R_cam2world"] = R_cam2world
def look_at(eye, center, up, return_cam2world=True):
"""
Return camera pose looking at a given center point.
Analogous of gluLookAt function, using OpenCV camera convention.
"""
z = center - eye
z /= np.linalg.norm(z, axis=-1, keepdims=True)
y = -up
y = y - np.sum(y * z, axis=-1, keepdims=True) * z
y /= np.linalg.norm(y, axis=-1, keepdims=True)
x = np.cross(y, z, axis=-1)
if return_cam2world:
R = np.stack((x, y, z), axis=-1)
t = eye
else:
# World to camera transformation
# Transposed matrix
R = np.stack((x, y, z), axis=-2)
t = - np.einsum('...ij, ...j', R, eye)
return R, t
def look_at_for_habitat(eye, center, up, return_cam2world=True):
R, t = look_at(eye, center, up)
orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T)
return orientation, t
def generate_orientation_noise(pan_range, tilt_range, roll_range):
return (quaternion.from_rotation_vector(np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP)
* quaternion.from_rotation_vector(np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT)
* quaternion.from_rotation_vector(np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT))
class NoNaviguableSpaceError(RuntimeError):
def __init__(self, *args):
super().__init__(*args)
class MultiviewHabitatSimGenerator:
def __init__(self,
scene,
navmesh,
scene_dataset_config_file,
resolution = (240, 320),
views_count=2,
hfov = 60,
gpu_id = 0,
size = 10000,
minimum_covisibility = 0.5,
transform = None):
self.scene = scene
self.navmesh = navmesh
self.scene_dataset_config_file = scene_dataset_config_file
self.resolution = resolution
self.views_count = views_count
assert(self.views_count >= 1)
self.hfov = hfov
self.gpu_id = gpu_id
self.size = size
self.transform = transform
# Noise added to camera orientation
self.pan_range = (-3, 3)
self.tilt_range = (-10, 10)
self.roll_range = (-5, 5)
# Height range to sample cameras
self.height_range = (1.2, 1.8)
# Random steps between the camera views
self.random_steps_count = 5
self.random_step_variance = 2.0
# Minimum fraction of the scene which should be valid (well defined depth)
self.minimum_valid_fraction = 0.7
# Distance threshold to see to select pairs
self.distance_threshold = 0.05
# Minimum IoU of a view point cloud with respect to the reference view to be kept.
self.minimum_covisibility = minimum_covisibility
# Maximum number of retries.
self.max_attempts_count = 100
self.seed = None
self._lazy_initialization()
def _lazy_initialization(self):
# Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly
if self.seed == None:
# Re-seed numpy generator
np.random.seed()
self.seed = np.random.randint(2**32-1)
sim_cfg = habitat_sim.SimulatorConfiguration()
sim_cfg.scene_id = self.scene
if self.scene_dataset_config_file is not None and self.scene_dataset_config_file != "":
sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file
sim_cfg.random_seed = self.seed
sim_cfg.load_semantic_mesh = False
sim_cfg.gpu_device_id = self.gpu_id
depth_sensor_spec = habitat_sim.CameraSensorSpec()
depth_sensor_spec.uuid = "depth"
depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH
depth_sensor_spec.resolution = self.resolution
depth_sensor_spec.hfov = self.hfov
depth_sensor_spec.position = [0.0, 0.0, 0]
depth_sensor_spec.orientation
rgb_sensor_spec = habitat_sim.CameraSensorSpec()
rgb_sensor_spec.uuid = "color"
rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR
rgb_sensor_spec.resolution = self.resolution
rgb_sensor_spec.hfov = self.hfov
rgb_sensor_spec.position = [0.0, 0.0, 0]
agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec, depth_sensor_spec])
cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])
self.sim = habitat_sim.Simulator(cfg)
if self.navmesh is not None and self.navmesh != "":
# Use pre-computed navmesh when available (usually better than those generated automatically)
self.sim.pathfinder.load_nav_mesh(self.navmesh)
if not self.sim.pathfinder.is_loaded:
# Try to compute a navmesh
navmesh_settings = habitat_sim.NavMeshSettings()
navmesh_settings.set_defaults()
self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True)
# Ensure that the navmesh is not empty
if not self.sim.pathfinder.is_loaded:
raise NoNaviguableSpaceError(f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})")
self.agent = self.sim.initialize_agent(agent_id=0)
def close(self):
self.sim.close()
def __del__(self):
self.sim.close()
def __len__(self):
return self.size
def sample_random_viewpoint(self):
""" Sample a random viewpoint using the navmesh """
nav_point = self.sim.pathfinder.get_random_navigable_point()
# Sample a random viewpoint height
viewpoint_height = np.random.uniform(*self.height_range)
viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP
viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
return viewpoint_position, viewpoint_orientation, nav_point
def sample_other_random_viewpoint(self, observed_point, nav_point):
""" Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point."""
other_nav_point = nav_point
walk_directions = self.random_step_variance * np.asarray([1,0,1])
for i in range(self.random_steps_count):
temp = self.sim.pathfinder.snap_point(other_nav_point + walk_directions * np.random.normal(size=3))
# Snapping may return nan when it fails
if not np.isnan(temp[0]):
other_nav_point = temp
other_viewpoint_height = np.random.uniform(*self.height_range)
other_viewpoint_position = other_nav_point + other_viewpoint_height * habitat_sim.geo.UP
# Set viewing direction towards the central point
rotation, position = look_at_for_habitat(eye=other_viewpoint_position, center=observed_point, up=habitat_sim.geo.UP, return_cam2world=True)
rotation = rotation * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
return position, rotation, other_nav_point
def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud):
""" Check if a viewpoint is valid and overlaps significantly with a reference one. """
# Observation
pixels_count = self.resolution[0] * self.resolution[1]
valid_fraction = len(other_pointcloud) / pixels_count
assert valid_fraction <= 1.0 and valid_fraction >= 0.0
overlap = compute_pointcloud_overlaps_scikit(ref_pointcloud, other_pointcloud, self.distance_threshold, compute_symmetric=True)
covisibility = min(overlap["intersection1"] / pixels_count, overlap["intersection2"] / pixels_count)
is_valid = (valid_fraction >= self.minimum_valid_fraction) and (covisibility >= self.minimum_covisibility)
return is_valid, valid_fraction, covisibility
def is_other_viewpoint_overlapping(self, ref_pointcloud, observation, position, rotation):
""" Check if a viewpoint is valid and overlaps significantly with a reference one. """
# Observation
other_pointcloud = compute_pointcloud(observation['depth'], self.hfov, position, rotation)
return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)
def render_viewpoint(self, viewpoint_position, viewpoint_orientation):
agent_state = habitat_sim.AgentState()
agent_state.position = viewpoint_position
agent_state.rotation = viewpoint_orientation
self.agent.set_state(agent_state)
viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0)
_append_camera_parameters(viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation)
return viewpoint_observations
def __getitem__(self, useless_idx):
ref_position, ref_orientation, nav_point = self.sample_random_viewpoint()
ref_observations = self.render_viewpoint(ref_position, ref_orientation)
# Extract point cloud
ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov,
camera_position=ref_position, camera_rotation=ref_orientation)
pixels_count = self.resolution[0] * self.resolution[1]
ref_valid_fraction = len(ref_pointcloud) / pixels_count
assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0
if ref_valid_fraction < self.minimum_valid_fraction:
# This should produce a recursion error at some point when something is very wrong.
return self[0]
# Pick an reference observed point in the point cloud
observed_point = np.mean(ref_pointcloud, axis=0)
# Add the first image as reference
viewpoints_observations = [ref_observations]
viewpoints_covisibility = [ref_valid_fraction]
viewpoints_positions = [ref_position]
viewpoints_orientations = [quaternion.as_float_array(ref_orientation)]
viewpoints_clouds = [ref_pointcloud]
viewpoints_valid_fractions = [ref_valid_fraction]
for _ in range(self.views_count - 1):
# Generate an other viewpoint using some dummy random walk
successful_sampling = False
for sampling_attempt in range(self.max_attempts_count):
position, rotation, _ = self.sample_other_random_viewpoint(observed_point, nav_point)
# Observation
other_viewpoint_observations = self.render_viewpoint(position, rotation)
other_pointcloud = compute_pointcloud(other_viewpoint_observations['depth'], self.hfov, position, rotation)
is_valid, valid_fraction, covisibility = self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)
if is_valid:
successful_sampling = True
break
if not successful_sampling:
print("WARNING: Maximum number of attempts reached.")
# Dirty hack, try using a novel original viewpoint
return self[0]
viewpoints_observations.append(other_viewpoint_observations)
viewpoints_covisibility.append(covisibility)
viewpoints_positions.append(position)
viewpoints_orientations.append(quaternion.as_float_array(rotation)) # WXYZ convention for the quaternion encoding.
viewpoints_clouds.append(other_pointcloud)
viewpoints_valid_fractions.append(valid_fraction)
# Estimate relations between all pairs of images
pairwise_visibility_ratios = np.ones((len(viewpoints_observations), len(viewpoints_observations)))
for i in range(len(viewpoints_observations)):
pairwise_visibility_ratios[i,i] = viewpoints_valid_fractions[i]
for j in range(i+1, len(viewpoints_observations)):
overlap = compute_pointcloud_overlaps_scikit(viewpoints_clouds[i], viewpoints_clouds[j], self.distance_threshold, compute_symmetric=True)
pairwise_visibility_ratios[i,j] = overlap['intersection1'] / pixels_count
pairwise_visibility_ratios[j,i] = overlap['intersection2'] / pixels_count
# IoU is relative to the image 0
data = {"observations": viewpoints_observations,
"positions": np.asarray(viewpoints_positions),
"orientations": np.asarray(viewpoints_orientations),
"covisibility_ratios": np.asarray(viewpoints_covisibility),
"valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float),
"pairwise_visibility_ratios": np.asarray(pairwise_visibility_ratios, dtype=float),
}
if self.transform is not None:
data = self.transform(data)
return data
def generate_random_spiral_trajectory(self, images_count = 100, max_radius=0.5, half_turns=5, use_constant_orientation=False):
"""
Return a list of images corresponding to a spiral trajectory from a random starting point.
Useful to generate nice visualisations.
Use an even number of half turns to get a nice "C1-continuous" loop effect
"""
ref_position, ref_orientation, navpoint = self.sample_random_viewpoint()
ref_observations = self.render_viewpoint(ref_position, ref_orientation)
ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov,
camera_position=ref_position, camera_rotation=ref_orientation)
pixels_count = self.resolution[0] * self.resolution[1]
if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction:
# Dirty hack: ensure that the valid part of the image is significant
return self.generate_random_spiral_trajectory(images_count, max_radius, half_turns, use_constant_orientation)
# Pick an observed point in the point cloud
observed_point = np.mean(ref_pointcloud, axis=0)
ref_R, ref_t = compute_camera_pose_opencv_convention(ref_position, ref_orientation)
images = []
is_valid = []
# Spiral trajectory, use_constant orientation
for i, alpha in enumerate(np.linspace(0, 1, images_count)):
r = max_radius * np.abs(np.sin(alpha * np.pi)) # Increase then decrease the radius
theta = alpha * half_turns * np.pi
x = r * np.cos(theta)
y = r * np.sin(theta)
z = 0.0
position = ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3,1)).flatten()
if use_constant_orientation:
orientation = ref_orientation
else:
# trajectory looking at a mean point in front of the ref observation
orientation, position = look_at_for_habitat(eye=position, center=observed_point, up=habitat_sim.geo.UP)
observations = self.render_viewpoint(position, orientation)
images.append(observations['color'][...,:3])
_is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(ref_pointcloud, observations, position, orientation)
is_valid.append(_is_valid)
return images, np.all(is_valid) |