Spaces:
Paused
Paused
File size: 19,666 Bytes
579a758 8c19e54 a83c683 c449593 579a758 6036cd8 8c19e54 a83c683 8c19e54 cfd1f34 ed60b39 8c19e54 af26267 8c19e54 e7cd9d2 8c19e54 358991e 4290815 60d3a1b 8c19e54 9e37406 c9c856d 9e37406 8c19e54 febd078 8c19e54 d1a37a7 8c19e54 ed60b39 8c19e54 d1a37a7 8c19e54 f52006b 8c19e54 f52006b d1a37a7 f52006b 8c19e54 febd078 8c19e54 febd078 8c19e54 e703756 579a758 8c19e54 cc75e44 8c19e54 cc75e44 8c19e54 e703756 8c19e54 e703756 8c19e54 c639632 9e37406 dd6f240 8c19e54 18c0bae 8c19e54 18c0bae febd078 f52006b e703756 8c19e54 e703756 8c19e54 e703756 8c19e54 e703756 8c19e54 e703756 7e1d2db 8c19e54 e703756 352f55d 8c19e54 352f55d 60d3a1b bdf3460 9118691 352f55d 116013b 579a758 352f55d 116013b 352f55d b75176e 4548ca7 b75176e 352f55d 116013b 352f55d 579a758 8c19e54 96dad10 60d3a1b 8c19e54 4290815 579a758 8c19e54 be190bc 8c19e54 af26267 8c19e54 be190bc 8c19e54 e703756 8c19e54 579a758 66b3987 579a758 e703756 579a758 4290815 579a758 8c19e54 af26267 579a758 358991e 60d3a1b 358991e 9118691 60d3a1b 9118691 5972846 579a758 3942c98 579a758 3942c98 579a758 8c19e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
from flask import Flask, request, jsonify, stream_with_context, send_file, send_from_directory
import asyncio
import torch
import shutil
import os
import sys
from time import strftime
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
# from dotenv import load_dotenv
from concurrent.futures import ProcessPoolExecutor, as_completed, ThreadPoolExecutor
from stream_server import add_video,HLS_DIR, generate_m3u8
import math
# Load environment variables from .env file
# load_dotenv()
# Initialize ProcessPoolExecutor for parallel processing
executor = ThreadPoolExecutor(max_workers=2)
torch.cuda.empty_cache()
class AnimationConfig:
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
self.driven_audio = driven_audio_path
self.source_image = source_image_path
self.ref_eyeblink = None
self.ref_pose = None
self.checkpoint_dir = './checkpoints'
self.result_dir = result_folder
self.pose_style = pose_style
self.batch_size = 2
self.expression_scale = expression_scale
self.input_yaw = None
self.input_pitch = None
self.input_roll = None
self.enhancer = enhancer
self.background_enhancer = None
self.cpu = False
self.face3dvis = False
self.still = still
self.preprocess = preprocess
self.verbose = False
self.old_version = False
self.net_recon = 'resnet50'
self.init_path = None
self.use_last_fc = False
self.bfm_folder = './checkpoints/BFM_Fitting/'
self.bfm_model = 'BFM_model_front.mat'
self.focal = 1015.
self.center = 112.
self.camera_d = 10.
self.z_near = 5.
self.z_far = 15.
self.device = 'cuda'
self.image_hardcoded = image_hardcoded
app = Flask(__name__)
# CORS(app)
TEMP_DIR = None
start_time = None
audio_chunks = []
preprocessed_data = None
args = None
unique_id = None
m3u8_path = None
audio_duration = None
app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None
# Global paths
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar')
# Function for running the actual task (using preprocessed data)
def process_chunk(audio_chunk, preprocessed_data, args):
print("Entered Process Chunk Function")
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint
global free_view_checkpoint
if args.preprocess == 'full':
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
else:
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
first_coeff_path = preprocessed_data["first_coeff_path"]
crop_pic_path = preprocessed_data["crop_pic_path"]
crop_info_path = "/home/user/app/preprocess_data/crop_info.json"
with open(crop_info_path , "rb") as f:
crop_info = json.load(f)
print(f"Loaded existing preprocessed data")
print("first_coeff_path",first_coeff_path)
print("crop_pic_path",crop_pic_path)
print("crop_info",crop_info)
torch.cuda.empty_cache()
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, args.device)
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None)
# Further processing with animate_from_coeff using the coeff_path
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, args.device)
torch.cuda.empty_cache()
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk,
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll,
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
torch.cuda.empty_cache()
print("Will Enter Animation")
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info,
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
# video_clip = mp.VideoFileClip(temp_file_path)
# duration = video_clip.duration
app.config['temp_response'] = base64_video
app.config['final_video_path'] = temp_file_path
# app.config['final_video_duration'] = duration
torch.cuda.empty_cache()
return base64_video, temp_file_path
def create_temp_dir():
return tempfile.TemporaryDirectory()
def save_uploaded_file(file, filename,TEMP_DIR):
print("Entered save_uploaded_file")
unique_filename = str(uuid.uuid4()) + "_" + filename
file_path = os.path.join(TEMP_DIR.name, unique_filename)
file.save(file_path)
return file_path
def custom_cleanup(temp_dir):
# Iterate over the files and directories in TEMP_DIR
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
print(f"Deleted: {file_path}")
torch.cuda.empty_cache()
import gc
gc.collect()
# def get_audio_duration(audio_path):
# audio_clip = mp.AudioFileClip(audio_path)
# duration_in_seconds = audio_clip.duration
# audio_clip.close() # Don't forget to close the clip
# return duration_in_seconds
def generate_audio(voice_cloning, voice_gender, text_prompt):
print("generate_audio")
if voice_cloning == 'no':
if voice_gender == 'male':
voice = 'echo'
print('Entering Audio creation using elevenlabs')
set_api_key('92e149985ea2732b4359c74346c3daee')
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
print('Audio file saved using elevenlabs')
else:
voice = 'nova'
print('Entering Audio creation using whisper')
response = client.audio.speech.create(model="tts-1-hd",
voice=voice,
input = text_prompt)
print('Audio created using whisper')
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
driven_audio_path = temp_file.name
response.write_to_file(driven_audio_path)
print('Audio file saved using whisper')
elif voice_cloning == 'yes':
set_api_key('92e149985ea2732b4359c74346c3daee')
# voice = clone(name = "User Cloned Voice",
# files = [user_voice_path] )
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
# audio_duration = get_audio_duration(driven_audio_path)
# print('Total Audio Duration in seconds',audio_duration)
return driven_audio_path
def run_preprocessing(args):
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
fixed_temp_dir = "/home/user/app/preprocess_data/"
os.makedirs(fixed_temp_dir, exist_ok=True)
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes":
print("Loading preprocessed data...")
with open(preprocessed_data_path, "rb") as f:
preprocessed_data = pickle.load(f)
print("Loaded existing preprocessed data from:", preprocessed_data_path)
return preprocessed_data
client = OpenAI(api_key="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")
def openai_chat_avatar(text_prompt):
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "system", "content": "Ensure answers are concise, human-like, and clear while maintaining quality. Use the fewest possible words, avoiding unnecessary articles, prepositions, and adjectives. Responses should be short but still address the question thoroughly without being verbose.Keep them to one sentence only"},
{"role": "user", "content": f"Hi! I need help with something. {text_prompt}"},
],
max_tokens = len(text_prompt) + 300 # Use the length of the input text
# temperature=0.3,
# stop=["Translate:", "Text:"]
)
return response
def split_audio(audio_path, TEMP_DIR, chunk_duration):
audio_clip = mp.AudioFileClip(audio_path)
total_duration = audio_clip.duration
print("split_audio duration:",total_duration)
number_of_chunks = math.ceil(total_duration / chunk_duration)
print("Number of audio chunks:",number_of_chunks)
audio_chunks = []
for i in range(number_of_chunks):
start_time = i * chunk_duration
end_time = min(start_time + chunk_duration, total_duration)
chunk = audio_clip.subclip(start_time, end_time)
# Create a temporary file for the chunk
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
chunk_path = temp_file.name
chunk.write_audiofile(chunk_path) # Specify codec if needed
audio_chunks.append((start_time, chunk_path))
audio_clip.close() # Close the audio clip to release resources
return audio_chunks, total_duration
# def extract_order_from_path(temp_file_path):
# match = re.search(r'videostream(\d+)', temp_file_path)
# return int(match.group(1)) if match else -1 # Return -1 if no match is found, handle appropriately.
# Generator function to yield chunk results as they are processed
def generate_chunks(audio_chunks, preprocessed_data, args, m3u8_path, audio_duration):
global TEMP_DIR
future_to_chunk = {executor.submit(process_chunk, chunk[1], preprocessed_data, args): chunk[0] for chunk in audio_chunks}
processed_chunks = {chunk[0]: None for chunk in audio_chunks}
print("processed_chunks:",processed_chunks)
yielded_count = 1
try:
for chunk_idx, future in enumerate(as_completed(future_to_chunk)):
idx = future_to_chunk[future]
try:
base64_video, temp_file_path = future.result()
processed_chunks[idx] = temp_file_path
for expected_start_time in sorted(processed_chunks.keys()):
if processed_chunks[expected_start_time] is not None:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(add_video(processed_chunks[expected_start_time], m3u8_path, audio_duration))
loop.close()
yield json.dumps({'start_time': expected_start_time, 'video_index': yielded_count}).encode('utf-8')
processed_chunks[expected_start_time] = None
yielded_count += 1
else:
break
except Exception as e:
yield f"Task for chunk {idx} failed: {e}\n"
finally:
if TEMP_DIR:
custom_cleanup(TEMP_DIR.name)
@app.route("/run", methods=['POST'])
def parallel_processing():
global start_time
global audio_chunks, preprocessed_data, args, m3u8_path, audio_duration
start_time = time.time()
global TEMP_DIR
TEMP_DIR = create_temp_dir()
global unique_id
unique_id = str(uuid.uuid4())
print('request:',request.method)
try:
if request.method == 'POST':
# source_image = request.files['source_image']
image_path = '/home/user/app/images/marc_smile_enhanced.jpg'
source_image = Image.open(image_path)
text_prompt = request.form['text_prompt']
print('Input text prompt: ',text_prompt)
text_prompt = text_prompt.strip()
if not text_prompt:
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
voice_cloning = request.form.get('voice_cloning', 'yes')
image_hardcoded = request.form.get('image_hardcoded', 'no')
chat_model_used = request.form.get('chat_model_used', 'openai')
target_language = request.form.get('target_language', 'original_text')
print('target_language',target_language)
pose_style = int(request.form.get('pose_style', 1))
expression_scale = float(request.form.get('expression_scale', 1))
enhancer = request.form.get('enhancer', None)
voice_gender = request.form.get('voice_gender', 'male')
still_str = request.form.get('still', 'False')
still = still_str.lower() == 'false'
print('still', still)
preprocess = request.form.get('preprocess', 'crop')
print('preprocess selected: ',preprocess)
# ref_pose_video = request.files.get('ref_pose', None)
response = openai_chat_avatar(text_prompt)
text_prompt = response.choices[0].message.content.strip()
app.config['text_prompt'] = text_prompt
print('Final output text prompt using openai: ',text_prompt)
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
print(source_image_path)
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
result_folder = os.path.join(save_dir, "results")
os.makedirs(result_folder, exist_ok=True)
ref_pose_video_path = None
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
preprocessed_data = run_preprocessing(args)
chunk_duration = 3
print(f"Splitting the audio into {chunk_duration}-second chunks...")
audio_chunks, audio_duration = split_audio(driven_audio_path, TEMP_DIR, chunk_duration=chunk_duration)
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
os.makedirs('lives', exist_ok=True)
print("Entering generate m3u8")
m3u8_path = f'lives/{unique_id}.m3u8'
generate_m3u8(audio_duration, m3u8_path)
return jsonify({'video_url': f'{unique_id}.m3u8'}), 200
except Exception as e:
app.logger.error(f"An error occurred: {e}")
return jsonify({'status': 'error', 'message': str(e)}), 500
@app.route("/stream", methods=["GET"])
def stream_results():
global audio_chunks, preprocessed_data, args, m3u8_path, audio_duration
print("audio_chunks",audio_chunks)
print("preprocessed_data",preprocessed_data)
print("args",args)
try:
return stream_with_context(generate_chunks(audio_chunks, preprocessed_data, args, m3u8_path, audio_duration))
except Exception as e:
return jsonify({'status': 'error', 'message': str(e)}), 500
@app.route("/live_stream/<string:playlist>", methods=['GET'])
async def get_concatenated_playlist(playlist: str):
"""
Endpoint to serve the concatenated HLS playlist.
Returns:
FileResponse: The concatenated playlist file.
"""
if playlist.endswith('.ts'):
playlist_path = os.path.join('hls_videos', playlist)
else:
playlist_path = os.path.join('lives', playlist)
if not os.path.exists(playlist_path):
return jsonify({'status': 'error', "msg":"Playlist not found"}), 404
return send_file(playlist_path, mimetype='application/vnd.apple.mpegurl')
# @app.route("/live_stream/<string:filename>", methods=["GET"])
# def live_stream(filename):
# return send_from_directory(directory="hls_videos", filename=filename)
@app.route("/health", methods=["GET"])
def health_status():
response = {"online": "true"}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)
|