Spaces:
Paused
Paused
Update app_parallel.py
Browse files- app_parallel.py +20 -4
app_parallel.py
CHANGED
@@ -109,7 +109,7 @@ def process_chunk(audio_chunk, preprocessed_data, args):
|
|
109 |
|
110 |
first_coeff_path = preprocessed_data["first_coeff_path"]
|
111 |
crop_pic_path = preprocessed_data["crop_pic_path"]
|
112 |
-
crop_info_path = preprocessed_data["
|
113 |
with open(crop_info_path , "rb") as f:
|
114 |
crop_info = pickle.load(f)
|
115 |
|
@@ -225,15 +225,31 @@ def run_preprocessing(args):
|
|
225 |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
|
226 |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir')
|
227 |
os.makedirs(first_frame_dir, exist_ok=True)
|
228 |
-
|
229 |
-
#
|
|
|
|
|
230 |
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
|
231 |
|
232 |
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes":
|
233 |
-
print("Loading preprocessed data...")
|
234 |
with open(preprocessed_data_path, "rb") as f:
|
235 |
preprocessed_data = pickle.load(f)
|
236 |
print("Loaded existing preprocessed data from:", preprocessed_data_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
return preprocessed_data
|
239 |
|
|
|
109 |
|
110 |
first_coeff_path = preprocessed_data["first_coeff_path"]
|
111 |
crop_pic_path = preprocessed_data["crop_pic_path"]
|
112 |
+
crop_info_path = preprocessed_data["crop_info"]
|
113 |
with open(crop_info_path , "rb") as f:
|
114 |
crop_info = pickle.load(f)
|
115 |
|
|
|
225 |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
|
226 |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir')
|
227 |
os.makedirs(first_frame_dir, exist_ok=True)
|
228 |
+
|
229 |
+
# Check if preprocessed data already exists
|
230 |
+
fixed_temp_dir = "C:/Users/fd01076/Downloads/preprocess_data"
|
231 |
+
os.makedirs(fixed_temp_dir, exist_ok=True)
|
232 |
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
|
233 |
|
234 |
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes":
|
|
|
235 |
with open(preprocessed_data_path, "rb") as f:
|
236 |
preprocessed_data = pickle.load(f)
|
237 |
print("Loaded existing preprocessed data from:", preprocessed_data_path)
|
238 |
+
else:
|
239 |
+
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, args.device)
|
240 |
+
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(args.source_image, first_frame_dir, args.preprocess, source_image_flag=True)
|
241 |
+
|
242 |
+
if not first_coeff_path:
|
243 |
+
raise Exception("Failed to get coefficients")
|
244 |
+
|
245 |
+
# Save the preprocessed data
|
246 |
+
preprocessed_data = {
|
247 |
+
"first_coeff_path": first_coeff_path,
|
248 |
+
"crop_pic_path": crop_pic_path,
|
249 |
+
"crop_info": crop_info
|
250 |
+
}
|
251 |
+
with open(preprocessed_data_path, "wb") as f:
|
252 |
+
pickle.dump(preprocessed_data, f)
|
253 |
|
254 |
return preprocessed_data
|
255 |
|