Concrete_creep_predict / DEPLOYMENT_SUMMARY.md
Sompote's picture
Upload 13 files
dda35dd verified

A newer version of the Streamlit SDK is available: 1.51.0

Upgrade

πŸ“¦ Deployment Package Summary

🎯 Ready for Hugging Face Spaces Deployment

This package contains everything needed to deploy the Enhanced Concrete Creep Prediction app on Hugging Face Spaces.

πŸ“ Package Contents

πŸ“Š Core Application Files

  • app.py (19KB) - Main Streamlit application with Hugging Face optimizations
  • lllm_model_all_token.py (60KB) - Enhanced LLM model architecture
  • requirements.txt (66B) - Python dependencies (cloud-optimized)

πŸ€– Model Files (Git LFS Required)

  • best_llm_model-17.pt (12MB) - Primary trained model
  • final_llm_model-5.pt (12MB) - Alternative model file
  • scalers/ (12KB total) - Preprocessing scalers
    • feature_scaler.pkl - Feature standardization
    • creep_scaler.pkl - Creep value scaling
    • time_values.pkl - Time sequence data

πŸ“‹ Configuration Files

  • .gitattributes - Git LFS configuration for large files
  • README.md - Hugging Face Space description with metadata

πŸ“– Documentation

  • HUGGINGFACE_DEPLOYMENT.md - Step-by-step deployment guide
  • DEPLOYMENT_SUMMARY.md - This summary file

πŸ› οΈ Optional Files

  • Dockerfile - Container deployment (if needed)
  • start_app.sh - Local testing script

πŸš€ Quick Deployment Checklist

βœ… Prerequisites

  • Hugging Face account created
  • Git LFS installed locally
  • Model files verified (24MB total)

βœ… Deployment Steps

  1. Create new Hugging Face Space (Streamlit SDK)
  2. Clone your space repository
  3. Copy all files from this deploy folder
  4. Initialize Git LFS (git lfs install)
  5. Add and commit files (git add . && git commit)
  6. Push to Hugging Face (git push)

⚑ Key Features

πŸ€– Model Architecture

  • Type: Enhanced LLM-style transformer
  • Parameters: ~750K total
  • Features: 3 input features (Density, fc, E)
  • Output: Time-series creep predictions

🎨 User Interface

  • Framework: Streamlit
  • Layout: Wide layout with sidebar controls
  • Visualizations: Linear and log-scale plots
  • Export: CSV download functionality

πŸ”§ Optimizations

  • Memory: Limited thread usage for cloud deployment
  • Performance: Streamlit caching enabled
  • Error Handling: Comprehensive error management
  • Monitoring: Performance metrics display

πŸ“Š Expected Performance

⏱️ Inference Speed

  • 1000 time points: ~0.1-1.0 seconds
  • Cloud deployment: Optimized for CPU inference
  • Memory usage: ~500MB RAM

🎯 Accuracy

  • Model type: Autoregressive prediction
  • Architecture: 4 layers, 4 attention heads
  • Pooling: Hybrid pooling method

πŸ”§ Technical Specifications

πŸ’» System Requirements

  • Python: 3.8+
  • Memory: 2GB+ RAM recommended
  • Storage: ~50MB total space
  • GPU: Optional (CPU optimized)

πŸ“¦ Dependencies

streamlit          # Web framework
pandas            # Data manipulation
numpy             # Numerical computing
torch             # Deep learning
matplotlib        # Plotting
scikit-learn      # Preprocessing
pickle-mixin      # Serialization

🌐 Deployment Options

🏠 Hugging Face Spaces (Recommended)

  • Cost: Free tier available
  • Hardware: CPU Basic/Upgrade/GPU options
  • URL: https://huggingface.co/spaces/USERNAME/SPACE_NAME

🐳 Docker (Alternative)

  • File: Dockerfile included
  • Usage: Standard container deployment
  • Port: 8501

πŸ–₯️ Local (Testing)

  • Script: start_app.sh
  • Command: streamlit run app.py
  • URL: http://localhost:8501

πŸ“ž Support & Resources

πŸ“š Documentation

🀝 Community

  • Hugging Face Discord: Community support
  • GitHub Issues: For technical problems
  • Forums: Discussion and help

πŸŽ‰ Ready to Deploy!

Your Enhanced Concrete Creep Prediction app is ready for deployment on Hugging Face Spaces. Follow the detailed guide in HUGGINGFACE_DEPLOYMENT.md for step-by-step instructions.

Total Package Size: ~25MB (with Git LFS)
Deployment Time: ~5-10 minutes
Expected Build Time: ~2-3 minutes