Spaces:
Runtime error
Runtime error
A newer version of the Streamlit SDK is available:
1.51.0
π¦ Deployment Package Summary
π― Ready for Hugging Face Spaces Deployment
This package contains everything needed to deploy the Enhanced Concrete Creep Prediction app on Hugging Face Spaces.
π Package Contents
π Core Application Files
app.py(19KB) - Main Streamlit application with Hugging Face optimizationslllm_model_all_token.py(60KB) - Enhanced LLM model architecturerequirements.txt(66B) - Python dependencies (cloud-optimized)
π€ Model Files (Git LFS Required)
best_llm_model-17.pt(12MB) - Primary trained modelfinal_llm_model-5.pt(12MB) - Alternative model filescalers/(12KB total) - Preprocessing scalersfeature_scaler.pkl- Feature standardizationcreep_scaler.pkl- Creep value scalingtime_values.pkl- Time sequence data
π Configuration Files
.gitattributes- Git LFS configuration for large filesREADME.md- Hugging Face Space description with metadata
π Documentation
HUGGINGFACE_DEPLOYMENT.md- Step-by-step deployment guideDEPLOYMENT_SUMMARY.md- This summary file
π οΈ Optional Files
Dockerfile- Container deployment (if needed)start_app.sh- Local testing script
π Quick Deployment Checklist
β Prerequisites
- Hugging Face account created
- Git LFS installed locally
- Model files verified (24MB total)
β Deployment Steps
- Create new Hugging Face Space (Streamlit SDK)
- Clone your space repository
- Copy all files from this deploy folder
- Initialize Git LFS (
git lfs install) - Add and commit files (
git add . && git commit) - Push to Hugging Face (
git push)
β‘ Key Features
π€ Model Architecture
- Type: Enhanced LLM-style transformer
- Parameters: ~750K total
- Features: 3 input features (Density, fc, E)
- Output: Time-series creep predictions
π¨ User Interface
- Framework: Streamlit
- Layout: Wide layout with sidebar controls
- Visualizations: Linear and log-scale plots
- Export: CSV download functionality
π§ Optimizations
- Memory: Limited thread usage for cloud deployment
- Performance: Streamlit caching enabled
- Error Handling: Comprehensive error management
- Monitoring: Performance metrics display
π Expected Performance
β±οΈ Inference Speed
- 1000 time points: ~0.1-1.0 seconds
- Cloud deployment: Optimized for CPU inference
- Memory usage: ~500MB RAM
π― Accuracy
- Model type: Autoregressive prediction
- Architecture: 4 layers, 4 attention heads
- Pooling: Hybrid pooling method
π§ Technical Specifications
π» System Requirements
- Python: 3.8+
- Memory: 2GB+ RAM recommended
- Storage: ~50MB total space
- GPU: Optional (CPU optimized)
π¦ Dependencies
streamlit # Web framework
pandas # Data manipulation
numpy # Numerical computing
torch # Deep learning
matplotlib # Plotting
scikit-learn # Preprocessing
pickle-mixin # Serialization
π Deployment Options
π Hugging Face Spaces (Recommended)
- Cost: Free tier available
- Hardware: CPU Basic/Upgrade/GPU options
- URL:
https://huggingface.co/spaces/USERNAME/SPACE_NAME
π³ Docker (Alternative)
- File:
Dockerfileincluded - Usage: Standard container deployment
- Port: 8501
π₯οΈ Local (Testing)
- Script:
start_app.sh - Command:
streamlit run app.py - URL:
http://localhost:8501
π Support & Resources
π Documentation
π€ Community
- Hugging Face Discord: Community support
- GitHub Issues: For technical problems
- Forums: Discussion and help
π Ready to Deploy!
Your Enhanced Concrete Creep Prediction app is ready for deployment on Hugging Face Spaces. Follow the detailed guide in HUGGINGFACE_DEPLOYMENT.md for step-by-step instructions.
Total Package Size: ~25MB (with Git LFS)
Deployment Time: ~5-10 minutes
Expected Build Time: ~2-3 minutes