Spaces:
Runtime error
Runtime error
Upload 13 files
Browse files- AI_logo.png +0 -0
- DEPLOYMENT_SUMMARY.md +137 -0
- HUGGINGFACE_DEPLOYMENT.md +200 -0
- README.md +89 -13
- best_llm_model-17.pt +3 -0
- lllm_model_all_token.py +1440 -0
- requirements.txt +6 -2
- scalers/creep_scaler.pkl +3 -0
- scalers/feature_scaler.pkl +3 -0
- scalers/time_values.pkl +3 -0
- src/streamlit_app.py +383 -38
- start_app.sh +56 -0
- streamlit_app.py +385 -0
AI_logo.png
ADDED
|
DEPLOYMENT_SUMMARY.md
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 📦 Deployment Package Summary
|
| 2 |
+
|
| 3 |
+
## 🎯 Ready for Hugging Face Spaces Deployment
|
| 4 |
+
|
| 5 |
+
This package contains everything needed to deploy the Enhanced Concrete Creep Prediction app on Hugging Face Spaces.
|
| 6 |
+
|
| 7 |
+
## 📁 Package Contents
|
| 8 |
+
|
| 9 |
+
### 📊 Core Application Files
|
| 10 |
+
- **`app.py`** (19KB) - Main Streamlit application with Hugging Face optimizations
|
| 11 |
+
- **`lllm_model_all_token.py`** (60KB) - Enhanced LLM model architecture
|
| 12 |
+
- **`requirements.txt`** (66B) - Python dependencies (cloud-optimized)
|
| 13 |
+
|
| 14 |
+
### 🤖 Model Files (Git LFS Required)
|
| 15 |
+
- **`best_llm_model-17.pt`** (12MB) - Primary trained model
|
| 16 |
+
- **`final_llm_model-5.pt`** (12MB) - Alternative model file
|
| 17 |
+
- **`scalers/`** (12KB total) - Preprocessing scalers
|
| 18 |
+
- `feature_scaler.pkl` - Feature standardization
|
| 19 |
+
- `creep_scaler.pkl` - Creep value scaling
|
| 20 |
+
- `time_values.pkl` - Time sequence data
|
| 21 |
+
|
| 22 |
+
### 📋 Configuration Files
|
| 23 |
+
- **`.gitattributes`** - Git LFS configuration for large files
|
| 24 |
+
- **`README.md`** - Hugging Face Space description with metadata
|
| 25 |
+
|
| 26 |
+
### 📖 Documentation
|
| 27 |
+
- **`HUGGINGFACE_DEPLOYMENT.md`** - Step-by-step deployment guide
|
| 28 |
+
- **`DEPLOYMENT_SUMMARY.md`** - This summary file
|
| 29 |
+
|
| 30 |
+
### 🛠️ Optional Files
|
| 31 |
+
- **`Dockerfile`** - Container deployment (if needed)
|
| 32 |
+
- **`start_app.sh`** - Local testing script
|
| 33 |
+
|
| 34 |
+
## 🚀 Quick Deployment Checklist
|
| 35 |
+
|
| 36 |
+
### ✅ Prerequisites
|
| 37 |
+
- [ ] Hugging Face account created
|
| 38 |
+
- [ ] Git LFS installed locally
|
| 39 |
+
- [ ] Model files verified (24MB total)
|
| 40 |
+
|
| 41 |
+
### ✅ Deployment Steps
|
| 42 |
+
1. [ ] Create new Hugging Face Space (Streamlit SDK)
|
| 43 |
+
2. [ ] Clone your space repository
|
| 44 |
+
3. [ ] Copy all files from this deploy folder
|
| 45 |
+
4. [ ] Initialize Git LFS (`git lfs install`)
|
| 46 |
+
5. [ ] Add and commit files (`git add . && git commit`)
|
| 47 |
+
6. [ ] Push to Hugging Face (`git push`)
|
| 48 |
+
|
| 49 |
+
## ⚡ Key Features
|
| 50 |
+
|
| 51 |
+
### 🤖 Model Architecture
|
| 52 |
+
- **Type**: Enhanced LLM-style transformer
|
| 53 |
+
- **Parameters**: ~750K total
|
| 54 |
+
- **Features**: 3 input features (Density, fc, E)
|
| 55 |
+
- **Output**: Time-series creep predictions
|
| 56 |
+
|
| 57 |
+
### 🎨 User Interface
|
| 58 |
+
- **Framework**: Streamlit
|
| 59 |
+
- **Layout**: Wide layout with sidebar controls
|
| 60 |
+
- **Visualizations**: Linear and log-scale plots
|
| 61 |
+
- **Export**: CSV download functionality
|
| 62 |
+
|
| 63 |
+
### 🔧 Optimizations
|
| 64 |
+
- **Memory**: Limited thread usage for cloud deployment
|
| 65 |
+
- **Performance**: Streamlit caching enabled
|
| 66 |
+
- **Error Handling**: Comprehensive error management
|
| 67 |
+
- **Monitoring**: Performance metrics display
|
| 68 |
+
|
| 69 |
+
## 📊 Expected Performance
|
| 70 |
+
|
| 71 |
+
### ⏱️ Inference Speed
|
| 72 |
+
- **1000 time points**: ~0.1-1.0 seconds
|
| 73 |
+
- **Cloud deployment**: Optimized for CPU inference
|
| 74 |
+
- **Memory usage**: ~500MB RAM
|
| 75 |
+
|
| 76 |
+
### 🎯 Accuracy
|
| 77 |
+
- **Model type**: Autoregressive prediction
|
| 78 |
+
- **Architecture**: 4 layers, 4 attention heads
|
| 79 |
+
- **Pooling**: Hybrid pooling method
|
| 80 |
+
|
| 81 |
+
## 🔧 Technical Specifications
|
| 82 |
+
|
| 83 |
+
### 💻 System Requirements
|
| 84 |
+
- **Python**: 3.8+
|
| 85 |
+
- **Memory**: 2GB+ RAM recommended
|
| 86 |
+
- **Storage**: ~50MB total space
|
| 87 |
+
- **GPU**: Optional (CPU optimized)
|
| 88 |
+
|
| 89 |
+
### 📦 Dependencies
|
| 90 |
+
```
|
| 91 |
+
streamlit # Web framework
|
| 92 |
+
pandas # Data manipulation
|
| 93 |
+
numpy # Numerical computing
|
| 94 |
+
torch # Deep learning
|
| 95 |
+
matplotlib # Plotting
|
| 96 |
+
scikit-learn # Preprocessing
|
| 97 |
+
pickle-mixin # Serialization
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## 🌐 Deployment Options
|
| 101 |
+
|
| 102 |
+
### 🏠 Hugging Face Spaces (Recommended)
|
| 103 |
+
- **Cost**: Free tier available
|
| 104 |
+
- **Hardware**: CPU Basic/Upgrade/GPU options
|
| 105 |
+
- **URL**: `https://huggingface.co/spaces/USERNAME/SPACE_NAME`
|
| 106 |
+
|
| 107 |
+
### 🐳 Docker (Alternative)
|
| 108 |
+
- **File**: `Dockerfile` included
|
| 109 |
+
- **Usage**: Standard container deployment
|
| 110 |
+
- **Port**: 8501
|
| 111 |
+
|
| 112 |
+
### 🖥️ Local (Testing)
|
| 113 |
+
- **Script**: `start_app.sh`
|
| 114 |
+
- **Command**: `streamlit run app.py`
|
| 115 |
+
- **URL**: `http://localhost:8501`
|
| 116 |
+
|
| 117 |
+
## 📞 Support & Resources
|
| 118 |
+
|
| 119 |
+
### 📚 Documentation
|
| 120 |
+
- **Hugging Face Spaces**: [docs](https://huggingface.co/docs/hub/spaces)
|
| 121 |
+
- **Streamlit**: [docs](https://docs.streamlit.io)
|
| 122 |
+
- **Git LFS**: [docs](https://git-lfs.github.io)
|
| 123 |
+
|
| 124 |
+
### 🤝 Community
|
| 125 |
+
- **Hugging Face Discord**: Community support
|
| 126 |
+
- **GitHub Issues**: For technical problems
|
| 127 |
+
- **Forums**: Discussion and help
|
| 128 |
+
|
| 129 |
+
---
|
| 130 |
+
|
| 131 |
+
**🎉 Ready to Deploy!**
|
| 132 |
+
|
| 133 |
+
Your Enhanced Concrete Creep Prediction app is ready for deployment on Hugging Face Spaces. Follow the detailed guide in `HUGGINGFACE_DEPLOYMENT.md` for step-by-step instructions.
|
| 134 |
+
|
| 135 |
+
**Total Package Size**: ~25MB (with Git LFS)
|
| 136 |
+
**Deployment Time**: ~5-10 minutes
|
| 137 |
+
**Expected Build Time**: ~2-3 minutes
|
HUGGINGFACE_DEPLOYMENT.md
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 Hugging Face Spaces Deployment Guide
|
| 2 |
+
|
| 3 |
+
This guide will help you deploy the Enhanced Concrete Creep Prediction app to Hugging Face Spaces.
|
| 4 |
+
|
| 5 |
+
## 📋 Prerequisites
|
| 6 |
+
|
| 7 |
+
1. **Hugging Face Account**: Create an account at [huggingface.co](https://huggingface.co)
|
| 8 |
+
2. **Git LFS**: Install Git Large File Storage for handling model files
|
| 9 |
+
3. **Git**: Standard Git installation
|
| 10 |
+
|
| 11 |
+
## 🛠️ Deployment Steps
|
| 12 |
+
|
| 13 |
+
### Step 1: Create a New Space
|
| 14 |
+
|
| 15 |
+
1. Go to [Hugging Face Spaces](https://huggingface.co/spaces)
|
| 16 |
+
2. Click "Create new Space"
|
| 17 |
+
3. Configure your space:
|
| 18 |
+
- **Name**: `concrete-creep-prediction` (or your preferred name)
|
| 19 |
+
- **License**: MIT
|
| 20 |
+
- **SDK**: Streamlit
|
| 21 |
+
- **Hardware**: CPU Basic (free tier) or CPU Upgrade/GPU for better performance
|
| 22 |
+
|
| 23 |
+
### Step 2: Clone Your New Space
|
| 24 |
+
|
| 25 |
+
```bash
|
| 26 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
|
| 27 |
+
cd YOUR_SPACE_NAME
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
### Step 3: Copy Files from Deploy Directory
|
| 31 |
+
|
| 32 |
+
Copy all files from the `deploy/` directory to your cloned space:
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
# Copy all files from deploy directory
|
| 36 |
+
cp /path/to/your/deploy/* ./
|
| 37 |
+
|
| 38 |
+
# Ensure executable permissions
|
| 39 |
+
chmod +x start_app.sh
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### Step 4: Initialize Git LFS
|
| 43 |
+
|
| 44 |
+
```bash
|
| 45 |
+
git lfs install
|
| 46 |
+
git lfs track "*.pt"
|
| 47 |
+
git lfs track "*.pkl"
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
### Step 5: Add and Commit Files
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
git add .
|
| 54 |
+
git commit -m "Initial deployment of Enhanced Concrete Creep Prediction app"
|
| 55 |
+
git push
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## 📁 Required Files Structure
|
| 59 |
+
|
| 60 |
+
Your Hugging Face Space should contain:
|
| 61 |
+
|
| 62 |
+
```
|
| 63 |
+
your-space/
|
| 64 |
+
├── app.py # Main Streamlit app
|
| 65 |
+
├── lllm_model_all_token.py # Model architecture
|
| 66 |
+
├── requirements.txt # Dependencies
|
| 67 |
+
├── README.md # Space description (with metadata)
|
| 68 |
+
├── .gitattributes # Git LFS configuration
|
| 69 |
+
├── best_llm_model-17.pt # Primary model (LFS)
|
| 70 |
+
├── final_llm_model-5.pt # Alternative model (LFS)
|
| 71 |
+
└── scalers/ # Scaler files (LFS)
|
| 72 |
+
├── feature_scaler.pkl
|
| 73 |
+
├── creep_scaler.pkl
|
| 74 |
+
└── time_values.pkl
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## ⚙️ Configuration Files
|
| 78 |
+
|
| 79 |
+
### requirements.txt
|
| 80 |
+
```
|
| 81 |
+
streamlit
|
| 82 |
+
pandas
|
| 83 |
+
numpy
|
| 84 |
+
torch
|
| 85 |
+
matplotlib
|
| 86 |
+
scikit-learn
|
| 87 |
+
pickle-mixin
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
### .gitattributes
|
| 91 |
+
```
|
| 92 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 93 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 94 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 95 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
### README.md Header
|
| 99 |
+
```yaml
|
| 100 |
+
---
|
| 101 |
+
title: Enhanced Concrete Creep Prediction
|
| 102 |
+
emoji: 🏗️
|
| 103 |
+
colorFrom: blue
|
| 104 |
+
colorTo: green
|
| 105 |
+
sdk: streamlit
|
| 106 |
+
sdk_version: 1.28.0
|
| 107 |
+
app_file: app.py
|
| 108 |
+
pinned: false
|
| 109 |
+
license: mit
|
| 110 |
+
---
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## 🚨 Important Notes
|
| 114 |
+
|
| 115 |
+
### File Size Considerations
|
| 116 |
+
- Model files (~12MB each) require Git LFS
|
| 117 |
+
- Total space size should be under Hugging Face limits
|
| 118 |
+
- Consider using CPU Basic for free deployment
|
| 119 |
+
|
| 120 |
+
### Performance Optimization
|
| 121 |
+
- Remove unused model files if space is limited
|
| 122 |
+
- The app automatically detects available models
|
| 123 |
+
- CPU inference is sufficient for most use cases
|
| 124 |
+
|
| 125 |
+
### Memory Management
|
| 126 |
+
- Hugging Face Spaces have memory limits
|
| 127 |
+
- The app is optimized for cloud deployment
|
| 128 |
+
- Consider reducing default time points if needed
|
| 129 |
+
|
| 130 |
+
## 🔧 Troubleshooting
|
| 131 |
+
|
| 132 |
+
### Common Issues:
|
| 133 |
+
|
| 134 |
+
1. **Git LFS Issues**
|
| 135 |
+
```bash
|
| 136 |
+
git lfs install
|
| 137 |
+
git lfs migrate import --include="*.pt,*.pkl"
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
2. **Build Failures**
|
| 141 |
+
- Check requirements.txt format
|
| 142 |
+
- Ensure all files are properly committed
|
| 143 |
+
- Verify Python package compatibility
|
| 144 |
+
|
| 145 |
+
3. **Memory Errors**
|
| 146 |
+
- Upgrade to CPU Upgrade hardware
|
| 147 |
+
- Reduce model complexity in app.py
|
| 148 |
+
- Optimize batch sizes
|
| 149 |
+
|
| 150 |
+
4. **Model Loading Errors**
|
| 151 |
+
- Verify Git LFS is working
|
| 152 |
+
- Check file paths in app.py
|
| 153 |
+
- Ensure proper file permissions
|
| 154 |
+
|
| 155 |
+
## 🎯 Optimization Tips
|
| 156 |
+
|
| 157 |
+
### For Better Performance:
|
| 158 |
+
1. **Upgrade Hardware**: Consider CPU Upgrade or GPU for faster inference
|
| 159 |
+
2. **Caching**: Streamlit caching is already implemented
|
| 160 |
+
3. **Model Selection**: Keep only the best performing model file
|
| 161 |
+
4. **Time Points**: Limit default prediction range for faster response
|
| 162 |
+
|
| 163 |
+
### For Reliability:
|
| 164 |
+
1. **Error Handling**: Comprehensive error handling is included
|
| 165 |
+
2. **Fallbacks**: Multiple model loading strategies
|
| 166 |
+
3. **User Feedback**: Clear status messages and warnings
|
| 167 |
+
|
| 168 |
+
## 📊 Monitoring
|
| 169 |
+
|
| 170 |
+
After deployment, monitor:
|
| 171 |
+
- **Build Logs**: Check for any deployment issues
|
| 172 |
+
- **Runtime Logs**: Monitor app performance
|
| 173 |
+
- **User Feedback**: Gather usage statistics
|
| 174 |
+
- **Resource Usage**: Track memory and compute usage
|
| 175 |
+
|
| 176 |
+
## 🔄 Updates
|
| 177 |
+
|
| 178 |
+
To update your deployed app:
|
| 179 |
+
|
| 180 |
+
```bash
|
| 181 |
+
# Make changes locally
|
| 182 |
+
git add .
|
| 183 |
+
git commit -m "Update: [description of changes]"
|
| 184 |
+
git push
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
Hugging Face Spaces will automatically rebuild and redeploy.
|
| 188 |
+
|
| 189 |
+
## 📞 Support
|
| 190 |
+
|
| 191 |
+
- **Hugging Face Docs**: [huggingface.co/docs/hub/spaces](https://huggingface.co/docs/hub/spaces)
|
| 192 |
+
- **Community**: Hugging Face Discord and Forums
|
| 193 |
+
- **Issues**: Create issues in your space repository
|
| 194 |
+
|
| 195 |
+
---
|
| 196 |
+
|
| 197 |
+
**Ready to Deploy! 🚀**
|
| 198 |
+
|
| 199 |
+
Your Enhanced Concrete Creep Prediction app will be available at:
|
| 200 |
+
`https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME`
|
README.md
CHANGED
|
@@ -1,20 +1,96 @@
|
|
| 1 |
---
|
| 2 |
-
title: Concrete Creep
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
- streamlit
|
| 10 |
pinned: false
|
| 11 |
-
short_description: Intelligent creep prediciotn for concrete
|
| 12 |
license: mit
|
| 13 |
---
|
| 14 |
|
| 15 |
-
#
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Enhanced Concrete Creep Prediction
|
| 3 |
+
emoji: 🏗️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.28.0
|
| 8 |
+
app_file: app.py
|
|
|
|
| 9 |
pinned: false
|
|
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🏗️ Enhanced Concrete Creep Prediction
|
| 14 |
|
| 15 |
+
This Hugging Face Space provides concrete creep strain prediction using an enhanced LLM-style model with advanced feature processing.
|
| 16 |
|
| 17 |
+
## 🚀 Features
|
| 18 |
+
|
| 19 |
+
- **Enhanced LLM-Style Architecture**: Feature-wise projection, parallel attention mechanisms, and hybrid token pooling
|
| 20 |
+
- **Autoregressive Prediction**: Step-by-step prediction generation for high accuracy
|
| 21 |
+
- **Real-time Inference**: Fast prediction with detailed timing metrics
|
| 22 |
+
- **Interactive Interface**: Easy-to-use Streamlit interface with comprehensive visualization
|
| 23 |
+
|
| 24 |
+
## 🔧 Model Architecture
|
| 25 |
+
|
| 26 |
+
### Enhanced Features:
|
| 27 |
+
- **Feature-wise projection**: Each feature (Density, fc, E) is projected to 16-dimensional vectors
|
| 28 |
+
- **Parallel attention mechanisms**:
|
| 29 |
+
- Feature-wise attention with 4 heads on 16-dim embeddings
|
| 30 |
+
- Batch-wise attention with 4 heads on 16-dim embedding
|
| 31 |
+
- **Hybrid token pooling**: Combines mean, attention, and last token pooling methods
|
| 32 |
+
- **Autoregressive prediction**: Generates predictions step by step for accuracy
|
| 33 |
+
|
| 34 |
+
### Technical Specifications:
|
| 35 |
+
- **Layers**: 4 transformer layers
|
| 36 |
+
- **Attention Heads**: 4 heads per layer
|
| 37 |
+
- **Model Dimension**: 192 (d_model)
|
| 38 |
+
- **Feed Forward**: 768 dimensions (4 × d_model)
|
| 39 |
+
- **Parameters**: ~750K total parameters
|
| 40 |
+
- **Dropout**: 0.057
|
| 41 |
+
|
| 42 |
+
## 📊 Usage
|
| 43 |
+
|
| 44 |
+
1. **Input Parameters**: Enter concrete properties in the sidebar:
|
| 45 |
+
- Density (kg/m³): 2000-3000
|
| 46 |
+
- Compressive Strength (fc) in MPa: 10-1000
|
| 47 |
+
- Elastic Modulus (E) in MPa: 10,000-1,000,000
|
| 48 |
+
- Initial Creep Value: Usually 0
|
| 49 |
+
|
| 50 |
+
2. **Time Settings**: Configure prediction timeframe:
|
| 51 |
+
- Maximum Time (days): Up to 10,000 days
|
| 52 |
+
- Use Original Time Values: Recommended for best accuracy
|
| 53 |
+
|
| 54 |
+
3. **Generate Prediction**: Click "🚀 Predict Creep Strain" to get results
|
| 55 |
+
|
| 56 |
+
## 📈 Output Features
|
| 57 |
+
|
| 58 |
+
- **Interactive Plots**: Linear and log-scale visualization of creep development
|
| 59 |
+
- **Detailed Metrics**: Comprehensive timing and performance statistics
|
| 60 |
+
- **Data Export**: Download predictions as CSV files
|
| 61 |
+
- **Summary Statistics**: Key metrics including creep rates and ranges
|
| 62 |
+
|
| 63 |
+
## ⚡ Performance
|
| 64 |
+
|
| 65 |
+
- **Inference Speed**: ~0.1-1.0 seconds for 1000 time points
|
| 66 |
+
- **Memory Usage**: ~500MB RAM
|
| 67 |
+
- **GPU Acceleration**: Automatic detection and usage when available
|
| 68 |
+
- **Model Efficiency**: Optimized for cloud deployment
|
| 69 |
+
|
| 70 |
+
## 🔬 Research Background
|
| 71 |
+
|
| 72 |
+
This model represents an advanced approach to concrete creep prediction using transformer-based architecture adapted for time series forecasting. The enhanced feature processing and attention mechanisms allow for better capture of complex relationships in concrete behavior over time.
|
| 73 |
+
|
| 74 |
+
### Key Innovations:
|
| 75 |
+
- Application of LLM-style attention to concrete engineering
|
| 76 |
+
- Parallel processing of features and temporal sequences
|
| 77 |
+
- Hybrid pooling for comprehensive representation
|
| 78 |
+
- Autoregressive generation for reliable long-term predictions
|
| 79 |
+
|
| 80 |
+
## 🛠️ Technical Details
|
| 81 |
+
|
| 82 |
+
The model uses PyTorch for deep learning computations and Streamlit for the interactive interface. All predictions are performed in real-time with comprehensive error handling and performance monitoring.
|
| 83 |
+
|
| 84 |
+
## 📝 Citation
|
| 85 |
+
|
| 86 |
+
If you use this model or interface in your research, please cite the relevant papers and acknowledge this implementation.
|
| 87 |
+
|
| 88 |
+
## 🤝 Support
|
| 89 |
+
|
| 90 |
+
For technical questions or issues, please refer to the original research documentation or create an issue in the source repository.
|
| 91 |
+
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
**Enhanced Concrete Creep Prediction**
|
| 95 |
+
*Powered by LLM-Style Model with Advanced Feature Processing*
|
| 96 |
+
*Deployed on Hugging Face Spaces*
|
best_llm_model-17.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea1a582f820706e251a2f99669cc879b8fd3211b0d5100c6ebaa4537da2e2ee8
|
| 3 |
+
size 12402410
|
lllm_model_all_token.py
ADDED
|
@@ -0,0 +1,1440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
from torch.utils.data import DataLoader, Dataset
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from sklearn.preprocessing import StandardScaler
|
| 9 |
+
from sklearn.model_selection import train_test_split
|
| 10 |
+
import math
|
| 11 |
+
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence
|
| 12 |
+
|
| 13 |
+
"""
|
| 14 |
+
Concrete Creep Prediction Model with LLM-Style Full History Processing
|
| 15 |
+
|
| 16 |
+
This model uses an LLM-style approach for predicting concrete creep, where the entire history
|
| 17 |
+
of creep measurements is processed using transformer architecture.
|
| 18 |
+
|
| 19 |
+
Key improvements:
|
| 20 |
+
1. Full token utilization - instead of only using the last token, the model leverages all tokens
|
| 21 |
+
in the creep history sequence using a hybrid pooling method that combines:
|
| 22 |
+
- Mean pooling: Average of all sequence tokens
|
| 23 |
+
- Attention pooling: Weighted sum based on learned attention
|
| 24 |
+
- Last token: Traditional approach (which worked well in previous versions)
|
| 25 |
+
|
| 26 |
+
This hybrid approach provides a richer representation of the sequence history,
|
| 27 |
+
allowing the model to better capture both overall patterns and recent trends.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# Set random seed for reproducibility
|
| 31 |
+
torch.manual_seed(42)
|
| 32 |
+
np.random.seed(42)
|
| 33 |
+
|
| 34 |
+
# Define the file paths
|
| 35 |
+
EXCEL_FEATURE_FILE = 'data_r28april.xlsx'
|
| 36 |
+
EXCEL_CREEP_FILE = 'creep_predictions.xlsx'
|
| 37 |
+
|
| 38 |
+
# Function to specifically handle the format of creep_predictions_1_to_220.xlsx
|
| 39 |
+
def load_creep_prediction_file():
|
| 40 |
+
"""
|
| 41 |
+
This function is specifically designed to handle the format of the
|
| 42 |
+
creep_predictions_1_to_220.xlsx file which has a structure where:
|
| 43 |
+
- Columns represent samples
|
| 44 |
+
- Rows represent time points
|
| 45 |
+
"""
|
| 46 |
+
try:
|
| 47 |
+
# Load the file
|
| 48 |
+
df_creep = pd.read_excel(EXCEL_CREEP_FILE)
|
| 49 |
+
print(f"Loaded creep file with shape: {df_creep.shape}")
|
| 50 |
+
|
| 51 |
+
# Check if first column is time values
|
| 52 |
+
first_col = df_creep.columns[0]
|
| 53 |
+
if first_col in ['time', 'Time', 'TIME', 't', 'T', 'day', 'Day', 'DAY', 'd', 'D'] or str(first_col).lower().startswith(('time', 'day')):
|
| 54 |
+
print(f"First column '{first_col}' recognized as time values")
|
| 55 |
+
# Extract time values as an array to preserve for later use
|
| 56 |
+
time_values = df_creep.iloc[:, 0].values
|
| 57 |
+
# Remove the time column to keep only sample data
|
| 58 |
+
df_creep = df_creep.iloc[:, 1:]
|
| 59 |
+
# Store time values in the DataFrame attributes for reference
|
| 60 |
+
df_creep.attrs['time_values'] = time_values
|
| 61 |
+
else:
|
| 62 |
+
print(f"First column '{first_col}' not recognized as time, but treating rows as time points")
|
| 63 |
+
# Generate sequential time values if not provided
|
| 64 |
+
time_values = np.arange(1, len(df_creep) + 1)
|
| 65 |
+
df_creep.attrs['time_values'] = time_values
|
| 66 |
+
|
| 67 |
+
print(f"DataFrame processed: {df_creep.shape[1]} samples across {df_creep.shape[0]} time points")
|
| 68 |
+
|
| 69 |
+
return df_creep
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error loading creep prediction file: {str(e)}")
|
| 73 |
+
# Return an empty DataFrame as a fallback
|
| 74 |
+
return pd.DataFrame()
|
| 75 |
+
|
| 76 |
+
# Update the load_data function to use the specialized loader
|
| 77 |
+
def load_data():
|
| 78 |
+
# Read creep predictions from the new file using specialized loader
|
| 79 |
+
df_creep = load_creep_prediction_file()
|
| 80 |
+
|
| 81 |
+
# Read features from the original file
|
| 82 |
+
df_features = pd.read_excel(EXCEL_FEATURE_FILE, sheet_name='Sheet2')
|
| 83 |
+
|
| 84 |
+
# Ensure we have the same number of samples in both dataframes
|
| 85 |
+
# Samples are in columns for creep data and in rows for feature data
|
| 86 |
+
if df_creep.shape[1] != len(df_features):
|
| 87 |
+
print(f"Warning: Creep data has {df_creep.shape[1]} samples (columns) but features data has {len(df_features)} rows")
|
| 88 |
+
|
| 89 |
+
# Find the minimum number of samples to use
|
| 90 |
+
min_samples = min(df_creep.shape[1], len(df_features))
|
| 91 |
+
|
| 92 |
+
# Keep only matching samples
|
| 93 |
+
df_creep = df_creep.iloc[:, :min_samples]
|
| 94 |
+
df_features = df_features.iloc[:min_samples]
|
| 95 |
+
|
| 96 |
+
print(f"Using only {min_samples} samples that match between datasets")
|
| 97 |
+
|
| 98 |
+
return df_creep, df_features
|
| 99 |
+
|
| 100 |
+
# Custom Dataset class for full-history prediction (like LLM)
|
| 101 |
+
class LLMConcreteCreepDataset(Dataset):
|
| 102 |
+
def __init__(self, creep_data, time_data, features, target_len=1):
|
| 103 |
+
"""
|
| 104 |
+
Args:
|
| 105 |
+
creep_data: List of variable-length time series [sample_idx][time_idx]
|
| 106 |
+
time_data: List of time points [sample_idx][time_idx]
|
| 107 |
+
features: Feature matrix [n_samples, n_features]
|
| 108 |
+
target_len: Number of values to predict
|
| 109 |
+
"""
|
| 110 |
+
self.creep_data = creep_data # List of time series
|
| 111 |
+
self.time_data = time_data # List of time points
|
| 112 |
+
self.features = features # Feature data
|
| 113 |
+
self.target_len = target_len # Number of values to predict
|
| 114 |
+
|
| 115 |
+
# Create samples
|
| 116 |
+
self.samples = self._prepare_samples()
|
| 117 |
+
|
| 118 |
+
def _prepare_samples(self):
|
| 119 |
+
"""
|
| 120 |
+
Prepare samples for LLM-style prediction
|
| 121 |
+
Each sample includes all previous time steps up to time t
|
| 122 |
+
and targets the next target_len values
|
| 123 |
+
"""
|
| 124 |
+
samples = []
|
| 125 |
+
|
| 126 |
+
for i in range(len(self.creep_data)):
|
| 127 |
+
time_series = self.creep_data[i]
|
| 128 |
+
time_points = self.time_data[i] if self.time_data is not None else None
|
| 129 |
+
feature_vec = self.features[i]
|
| 130 |
+
|
| 131 |
+
# For each time step (except the last target_len steps)
|
| 132 |
+
for t in range(1, len(time_series) - self.target_len + 1):
|
| 133 |
+
# Input: all previous values up to t
|
| 134 |
+
history = time_series[:t]
|
| 135 |
+
|
| 136 |
+
# Get time points if available
|
| 137 |
+
time_history = time_points[:t] if time_points is not None else None
|
| 138 |
+
|
| 139 |
+
# Target: next target_len values
|
| 140 |
+
targets = time_series[t:t+self.target_len]
|
| 141 |
+
|
| 142 |
+
samples.append((history, targets, feature_vec, time_history))
|
| 143 |
+
|
| 144 |
+
return samples
|
| 145 |
+
|
| 146 |
+
def __len__(self):
|
| 147 |
+
return len(self.samples)
|
| 148 |
+
|
| 149 |
+
def __getitem__(self, idx):
|
| 150 |
+
history, targets, features, time_history = self.samples[idx]
|
| 151 |
+
|
| 152 |
+
# Convert to tensors
|
| 153 |
+
history_tensor = torch.FloatTensor(history)
|
| 154 |
+
targets_tensor = torch.FloatTensor(targets)
|
| 155 |
+
features_tensor = torch.FloatTensor(features)
|
| 156 |
+
|
| 157 |
+
if time_history is not None:
|
| 158 |
+
time_tensor = torch.FloatTensor(time_history)
|
| 159 |
+
return history_tensor, targets_tensor, features_tensor, time_tensor, len(history)
|
| 160 |
+
else:
|
| 161 |
+
return history_tensor, targets_tensor, features_tensor, len(history)
|
| 162 |
+
|
| 163 |
+
# Custom collate function to handle variable length sequences
|
| 164 |
+
def collate_fn(batch):
|
| 165 |
+
"""
|
| 166 |
+
Pack variable length sequences for efficient processing
|
| 167 |
+
"""
|
| 168 |
+
# Sort by sequence length (descending)
|
| 169 |
+
if len(batch[0]) > 4: # With time data
|
| 170 |
+
batch.sort(key=lambda x: x[4], reverse=True)
|
| 171 |
+
histories, targets, features, times, lengths = zip(*batch)
|
| 172 |
+
|
| 173 |
+
# Pad sequences - keep all tensors on CPU to be moved to appropriate device later
|
| 174 |
+
padded_histories = pad_sequence(histories, batch_first=True)
|
| 175 |
+
padded_targets = torch.stack(targets)
|
| 176 |
+
padded_features = torch.stack(features)
|
| 177 |
+
padded_times = pad_sequence(times, batch_first=True)
|
| 178 |
+
|
| 179 |
+
return padded_histories, padded_targets, padded_features, padded_times, torch.tensor(lengths, dtype=torch.int64)
|
| 180 |
+
else: # Without time data
|
| 181 |
+
batch.sort(key=lambda x: x[3], reverse=True)
|
| 182 |
+
histories, targets, features, lengths = zip(*batch)
|
| 183 |
+
|
| 184 |
+
# Pad sequences - keep all tensors on CPU to be moved to appropriate device later
|
| 185 |
+
padded_histories = pad_sequence(histories, batch_first=True)
|
| 186 |
+
padded_targets = torch.stack(targets)
|
| 187 |
+
padded_features = torch.stack(features)
|
| 188 |
+
|
| 189 |
+
return padded_histories, padded_targets, padded_features, torch.tensor(lengths, dtype=torch.int64)
|
| 190 |
+
|
| 191 |
+
# Prepare data for LLM-style model
|
| 192 |
+
def prepare_llm_data(target_len=1, test_size=0.05, val_size=0.05):
|
| 193 |
+
# Load data from files
|
| 194 |
+
df_creep, df_features = load_data()
|
| 195 |
+
|
| 196 |
+
# Prepare variable-length sequences and time points
|
| 197 |
+
creep_sequences = []
|
| 198 |
+
time_points = []
|
| 199 |
+
|
| 200 |
+
# Check the format of the creep data file
|
| 201 |
+
print(f"Creep data has {df_creep.shape[1]} samples across {df_creep.shape[0]} time points")
|
| 202 |
+
|
| 203 |
+
# Get time values if available from the data loading step
|
| 204 |
+
if hasattr(df_creep, 'attrs') and 'time_values' in df_creep.attrs:
|
| 205 |
+
time_values = df_creep.attrs['time_values']
|
| 206 |
+
print(f"Found time values with shape: {time_values.shape}")
|
| 207 |
+
|
| 208 |
+
# Make sure time_values matches the number of rows in df_creep
|
| 209 |
+
if len(time_values) != df_creep.shape[0]:
|
| 210 |
+
print(f"Warning: Time values length ({len(time_values)}) doesn't match data rows ({df_creep.shape[0]})")
|
| 211 |
+
# Truncate or extend time_values to match
|
| 212 |
+
if len(time_values) > df_creep.shape[0]:
|
| 213 |
+
time_values = time_values[:df_creep.shape[0]]
|
| 214 |
+
else:
|
| 215 |
+
# Extend with sequential values
|
| 216 |
+
additional = np.arange(len(time_values) + 1, df_creep.shape[0] + 1)
|
| 217 |
+
time_values = np.append(time_values, additional)
|
| 218 |
+
print(f"Adjusted time values to length: {len(time_values)}")
|
| 219 |
+
else:
|
| 220 |
+
# Generate sequential time values if not available
|
| 221 |
+
time_values = np.arange(1, df_creep.shape[0] + 1)
|
| 222 |
+
print("Using generated sequential time values")
|
| 223 |
+
|
| 224 |
+
# Process each column (sample) in the creep data
|
| 225 |
+
for col_idx in range(df_creep.shape[1]):
|
| 226 |
+
try:
|
| 227 |
+
# Extract the column as a sample time series
|
| 228 |
+
sample_series = df_creep.iloc[:, col_idx].values
|
| 229 |
+
|
| 230 |
+
# Check for and filter out any NaN values
|
| 231 |
+
valid_indices = ~np.isnan(sample_series)
|
| 232 |
+
if not np.any(valid_indices):
|
| 233 |
+
print(f"Skipping column {col_idx} - no valid data")
|
| 234 |
+
continue
|
| 235 |
+
|
| 236 |
+
# Keep only valid data and corresponding time points
|
| 237 |
+
valid_series = sample_series[valid_indices]
|
| 238 |
+
valid_times = time_values[valid_indices]
|
| 239 |
+
|
| 240 |
+
# Store sequences if they're long enough
|
| 241 |
+
if len(valid_series) > target_len + 1: # Need at least target_len+1 points
|
| 242 |
+
creep_sequences.append(valid_series)
|
| 243 |
+
time_points.append(valid_times)
|
| 244 |
+
else:
|
| 245 |
+
print(f"Skipping column {col_idx} - insufficient data points ({len(valid_series)})")
|
| 246 |
+
except Exception as e:
|
| 247 |
+
print(f"Error processing column {col_idx}: {str(e)}")
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
# Log data shape
|
| 251 |
+
print(f"Extracted {len(creep_sequences)} valid creep sequences")
|
| 252 |
+
|
| 253 |
+
# Ensure we have same number of feature rows as creep sequences
|
| 254 |
+
if len(creep_sequences) != len(df_features):
|
| 255 |
+
print(f"Warning: Number of valid sequences ({len(creep_sequences)}) doesn't match feature count ({len(df_features)})")
|
| 256 |
+
# If we have more features than sequences, truncate features
|
| 257 |
+
if len(creep_sequences) < len(df_features):
|
| 258 |
+
df_features = df_features.iloc[:len(creep_sequences)]
|
| 259 |
+
print(f"Truncated features to {len(df_features)} rows")
|
| 260 |
+
else:
|
| 261 |
+
# If we have more sequences than features, truncate sequences
|
| 262 |
+
creep_sequences = creep_sequences[:len(df_features)]
|
| 263 |
+
time_points = time_points[:len(df_features)]
|
| 264 |
+
print(f"Truncated sequences to {len(creep_sequences)}")
|
| 265 |
+
|
| 266 |
+
# Check if we have at least one sequence
|
| 267 |
+
if len(creep_sequences) == 0:
|
| 268 |
+
raise ValueError("No valid sequences extracted. Check data format and filtering.")
|
| 269 |
+
|
| 270 |
+
# Normalize features
|
| 271 |
+
feature_scaler = StandardScaler()
|
| 272 |
+
normalized_features = feature_scaler.fit_transform(df_features)
|
| 273 |
+
|
| 274 |
+
# Import or define the CreepScaler class for consistency with llm_predict.py
|
| 275 |
+
class CreepScaler:
|
| 276 |
+
def __init__(self, factor=1000):
|
| 277 |
+
self.factor = factor
|
| 278 |
+
self.mean_ = 0 # Default to no mean shift
|
| 279 |
+
self.scale_ = factor # Use factor as scale
|
| 280 |
+
self.is_standard_scaler = False
|
| 281 |
+
|
| 282 |
+
def transform(self, X):
|
| 283 |
+
if isinstance(X, np.ndarray):
|
| 284 |
+
if self.is_standard_scaler:
|
| 285 |
+
return (X - self.mean_) / self.scale_
|
| 286 |
+
return X / self.factor
|
| 287 |
+
return np.array(X) / self.factor
|
| 288 |
+
|
| 289 |
+
def inverse_transform(self, X):
|
| 290 |
+
if isinstance(X, np.ndarray):
|
| 291 |
+
if self.is_standard_scaler:
|
| 292 |
+
return (X * self.scale_) + self.mean_
|
| 293 |
+
return X * self.factor
|
| 294 |
+
return np.array(X) * self.factor
|
| 295 |
+
|
| 296 |
+
# Create a creep scaler that divides by 1000
|
| 297 |
+
creep_scaler = CreepScaler(factor=1000)
|
| 298 |
+
|
| 299 |
+
# Apply normalization to sequences
|
| 300 |
+
normalized_creep_sequences = []
|
| 301 |
+
for seq in creep_sequences:
|
| 302 |
+
normalized_seq = creep_scaler.transform(np.array(seq).reshape(-1, 1)).flatten()
|
| 303 |
+
normalized_creep_sequences.append(normalized_seq)
|
| 304 |
+
|
| 305 |
+
# Normalize time points (log scale to handle large time values)
|
| 306 |
+
normalized_time_points = []
|
| 307 |
+
for seq in time_points:
|
| 308 |
+
normalized_seq = np.log1p(np.array(seq)) # log1p to handle zeros
|
| 309 |
+
normalized_time_points.append(normalized_seq)
|
| 310 |
+
|
| 311 |
+
# Print validation information
|
| 312 |
+
print(f"Final dataset: {len(normalized_creep_sequences)} sequences")
|
| 313 |
+
print(f"First sequence length: {len(normalized_creep_sequences[0])} time points")
|
| 314 |
+
|
| 315 |
+
# Create dataset
|
| 316 |
+
dataset = LLMConcreteCreepDataset(
|
| 317 |
+
normalized_creep_sequences,
|
| 318 |
+
normalized_time_points,
|
| 319 |
+
normalized_features,
|
| 320 |
+
target_len
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# If dataset is empty, raise an error
|
| 324 |
+
if len(dataset) == 0:
|
| 325 |
+
raise ValueError("Dataset is empty. Check the data preparation process.")
|
| 326 |
+
|
| 327 |
+
# Calculate split sizes
|
| 328 |
+
train_ratio = 1.0 - (test_size + val_size)
|
| 329 |
+
train_size = int(len(dataset) * train_ratio)
|
| 330 |
+
val_size_samples = int(len(dataset) * val_size)
|
| 331 |
+
test_size_samples = len(dataset) - train_size - val_size_samples
|
| 332 |
+
|
| 333 |
+
# Split into train, validation, and test sets using random_split
|
| 334 |
+
print(f"Splitting dataset into {train_ratio*100:.1f}% train, {val_size*100:.1f}% validation, {test_size*100:.1f}% test")
|
| 335 |
+
print(f"Train: {train_size} samples, Validation: {val_size_samples} samples, Test: {test_size_samples} samples")
|
| 336 |
+
|
| 337 |
+
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
|
| 338 |
+
dataset, [train_size, val_size_samples, test_size_samples]
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
return train_dataset, val_dataset, test_dataset, feature_scaler, creep_scaler
|
| 342 |
+
|
| 343 |
+
# Positional Encoding
|
| 344 |
+
class PositionalEncoding(nn.Module):
|
| 345 |
+
def __init__(self, d_model, max_len=5000):
|
| 346 |
+
super(PositionalEncoding, self).__init__()
|
| 347 |
+
|
| 348 |
+
pe = torch.zeros(max_len, d_model)
|
| 349 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
| 350 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
| 351 |
+
|
| 352 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 353 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 354 |
+
|
| 355 |
+
self.register_buffer('pe', pe)
|
| 356 |
+
|
| 357 |
+
def forward(self, x):
|
| 358 |
+
# x: [batch_size, seq_len, d_model]
|
| 359 |
+
return x + self.pe[:x.size(1), :].unsqueeze(0)
|
| 360 |
+
|
| 361 |
+
# Feature Encoder for static features
|
| 362 |
+
class FeatureEncoder(nn.Module):
|
| 363 |
+
def __init__(self, input_dim, hidden_dim, dropout=0.1):
|
| 364 |
+
super(FeatureEncoder, self).__init__()
|
| 365 |
+
|
| 366 |
+
# Original encoding path
|
| 367 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim * 2)
|
| 368 |
+
self.ln1 = nn.LayerNorm(hidden_dim * 2)
|
| 369 |
+
self.fc2 = nn.Linear(hidden_dim * 2, hidden_dim)
|
| 370 |
+
self.ln2 = nn.LayerNorm(hidden_dim)
|
| 371 |
+
|
| 372 |
+
# New feature-wise projection (each feature to dim 16)
|
| 373 |
+
self.feature_projection = nn.Linear(1, 16)
|
| 374 |
+
|
| 375 |
+
# Ensure feature attention is configured correctly
|
| 376 |
+
feature_embed_dim = 16
|
| 377 |
+
# For 16 dimensions, valid num_heads are: 1, 2, 4, 8, 16
|
| 378 |
+
feature_heads = 4 # 16 is divisible by 4
|
| 379 |
+
|
| 380 |
+
# Attention for parallel feature processing
|
| 381 |
+
self.feature_attention = nn.MultiheadAttention(
|
| 382 |
+
embed_dim=feature_embed_dim,
|
| 383 |
+
num_heads=feature_heads,
|
| 384 |
+
dropout=dropout,
|
| 385 |
+
batch_first=True
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# For batch attention, first choose the embedding dimension
|
| 389 |
+
# Make it a power of 2 for compatibility with many head configurations
|
| 390 |
+
batch_embed_dim = 16 # Fixed safe value, divisible by many head counts
|
| 391 |
+
|
| 392 |
+
# Now choose heads that divide evenly into the embed_dim
|
| 393 |
+
batch_heads = 4 # 16 is divisible by 4
|
| 394 |
+
|
| 395 |
+
# Always project input to the fixed batch_embed_dim
|
| 396 |
+
self.batch_projection = nn.Linear(input_dim, batch_embed_dim)
|
| 397 |
+
|
| 398 |
+
# Batch-wise attention with safe values
|
| 399 |
+
self.batch_attention = nn.MultiheadAttention(
|
| 400 |
+
embed_dim=batch_embed_dim,
|
| 401 |
+
num_heads=batch_heads,
|
| 402 |
+
dropout=dropout,
|
| 403 |
+
batch_first=True
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
# Layer norms for attention outputs
|
| 407 |
+
self.feature_ln = nn.LayerNorm(16)
|
| 408 |
+
self.batch_ln = nn.LayerNorm(batch_embed_dim)
|
| 409 |
+
|
| 410 |
+
# Integration layer - combines original and new paths
|
| 411 |
+
self.integration = nn.Linear(hidden_dim + 16 * input_dim + batch_embed_dim, hidden_dim)
|
| 412 |
+
self.integration_ln = nn.LayerNorm(hidden_dim)
|
| 413 |
+
|
| 414 |
+
self.dropout = nn.Dropout(dropout)
|
| 415 |
+
self.relu = nn.ReLU()
|
| 416 |
+
|
| 417 |
+
# Store dimensions for debugging
|
| 418 |
+
self.input_dim = input_dim
|
| 419 |
+
self.batch_embed_dim = batch_embed_dim
|
| 420 |
+
self.batch_heads = batch_heads
|
| 421 |
+
|
| 422 |
+
print(f"FeatureEncoder initialized with: input_dim={input_dim}, batch_embed_dim={batch_embed_dim}, batch_heads={batch_heads}")
|
| 423 |
+
|
| 424 |
+
def forward(self, x):
|
| 425 |
+
# x: [batch_size, input_dim]
|
| 426 |
+
batch_size, input_dim = x.size()
|
| 427 |
+
|
| 428 |
+
# Original path
|
| 429 |
+
original = self.fc1(x)
|
| 430 |
+
original = self.ln1(original)
|
| 431 |
+
original = self.relu(original)
|
| 432 |
+
original = self.dropout(original)
|
| 433 |
+
|
| 434 |
+
original = self.fc2(original)
|
| 435 |
+
original = self.ln2(original)
|
| 436 |
+
original = self.relu(original)
|
| 437 |
+
|
| 438 |
+
# Feature-wise projection path
|
| 439 |
+
# Reshape to process each feature separately
|
| 440 |
+
features = x.view(batch_size, input_dim, 1) # [batch_size, input_dim, 1]
|
| 441 |
+
features_projected = self.feature_projection(features) # [batch_size, input_dim, 16]
|
| 442 |
+
|
| 443 |
+
# Feature-wise attention
|
| 444 |
+
feature_attn_out, _ = self.feature_attention(
|
| 445 |
+
features_projected,
|
| 446 |
+
features_projected,
|
| 447 |
+
features_projected
|
| 448 |
+
) # [batch_size, input_dim, 16]
|
| 449 |
+
feature_attn_out = self.feature_ln(feature_attn_out + features_projected) # Add & Norm
|
| 450 |
+
|
| 451 |
+
# Apply projection to make input_dim compatible with attention
|
| 452 |
+
x_proj = self.batch_projection(x)
|
| 453 |
+
|
| 454 |
+
# Batch-wise attention
|
| 455 |
+
batch_attn_out, _ = self.batch_attention(
|
| 456 |
+
x_proj.unsqueeze(1), # [batch_size, 1, batch_embed_dim]
|
| 457 |
+
x_proj.unsqueeze(1),
|
| 458 |
+
x_proj.unsqueeze(1)
|
| 459 |
+
) # [batch_size, 1, batch_embed_dim]
|
| 460 |
+
batch_attn_out = self.batch_ln(batch_attn_out.squeeze(1) + x_proj) # Add & Norm
|
| 461 |
+
|
| 462 |
+
# Reshape feature attention output to concatenate
|
| 463 |
+
feature_attn_flat = feature_attn_out.reshape(batch_size, -1) # [batch_size, input_dim * 16]
|
| 464 |
+
|
| 465 |
+
# Concatenate all processed features
|
| 466 |
+
combined = torch.cat([original, feature_attn_flat, batch_attn_out], dim=1)
|
| 467 |
+
|
| 468 |
+
# Final integration
|
| 469 |
+
output = self.integration(combined)
|
| 470 |
+
output = self.integration_ln(output)
|
| 471 |
+
output = self.relu(output)
|
| 472 |
+
|
| 473 |
+
return output
|
| 474 |
+
|
| 475 |
+
# Self-Attention Block
|
| 476 |
+
class SelfAttention(nn.Module):
|
| 477 |
+
def __init__(self, d_model, num_heads, dropout=0.1):
|
| 478 |
+
super(SelfAttention, self).__init__()
|
| 479 |
+
self.d_model = d_model
|
| 480 |
+
self.num_heads = num_heads
|
| 481 |
+
self.head_dim = d_model // num_heads
|
| 482 |
+
|
| 483 |
+
assert self.head_dim * num_heads == d_model, "d_model must be divisible by num_heads"
|
| 484 |
+
|
| 485 |
+
# Multi-head attention
|
| 486 |
+
self.attention = nn.MultiheadAttention(
|
| 487 |
+
embed_dim=d_model,
|
| 488 |
+
num_heads=num_heads,
|
| 489 |
+
dropout=dropout,
|
| 490 |
+
batch_first=True
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
# Layer normalization and dropout
|
| 494 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 495 |
+
self.dropout = nn.Dropout(dropout)
|
| 496 |
+
|
| 497 |
+
def forward(self, x, attention_mask=None, key_padding_mask=None):
|
| 498 |
+
# x: [batch_size, seq_len, d_model]
|
| 499 |
+
|
| 500 |
+
# Self-attention with residual connection
|
| 501 |
+
attn_output, _ = self.attention(
|
| 502 |
+
query=x,
|
| 503 |
+
key=x,
|
| 504 |
+
value=x,
|
| 505 |
+
attn_mask=attention_mask,
|
| 506 |
+
key_padding_mask=key_padding_mask
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
# Add & Norm
|
| 510 |
+
x = x + self.dropout(attn_output)
|
| 511 |
+
x = self.layer_norm(x)
|
| 512 |
+
|
| 513 |
+
return x
|
| 514 |
+
|
| 515 |
+
# Feed-Forward Block
|
| 516 |
+
class FeedForward(nn.Module):
|
| 517 |
+
def __init__(self, d_model, d_ff, dropout=0.1):
|
| 518 |
+
super(FeedForward, self).__init__()
|
| 519 |
+
|
| 520 |
+
self.linear1 = nn.Linear(d_model, d_ff)
|
| 521 |
+
self.linear2 = nn.Linear(d_ff, d_model)
|
| 522 |
+
self.relu = nn.ReLU()
|
| 523 |
+
self.dropout = nn.Dropout(dropout)
|
| 524 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 525 |
+
|
| 526 |
+
def forward(self, x):
|
| 527 |
+
# x: [batch_size, seq_len, d_model]
|
| 528 |
+
|
| 529 |
+
# FFN with residual connection
|
| 530 |
+
ff_output = self.linear1(x)
|
| 531 |
+
ff_output = self.relu(ff_output)
|
| 532 |
+
ff_output = self.dropout(ff_output)
|
| 533 |
+
ff_output = self.linear2(ff_output)
|
| 534 |
+
|
| 535 |
+
# Add & Norm
|
| 536 |
+
x = x + self.dropout(ff_output)
|
| 537 |
+
x = self.layer_norm(x)
|
| 538 |
+
|
| 539 |
+
return x
|
| 540 |
+
|
| 541 |
+
# Transformer Encoder Layer
|
| 542 |
+
class EncoderLayer(nn.Module):
|
| 543 |
+
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
|
| 544 |
+
super(EncoderLayer, self).__init__()
|
| 545 |
+
|
| 546 |
+
self.self_attention = SelfAttention(d_model, num_heads, dropout)
|
| 547 |
+
self.feed_forward = FeedForward(d_model, d_ff, dropout)
|
| 548 |
+
|
| 549 |
+
def forward(self, x, attention_mask=None, key_padding_mask=None):
|
| 550 |
+
# x: [batch_size, seq_len, d_model]
|
| 551 |
+
|
| 552 |
+
# Self-attention block
|
| 553 |
+
x = self.self_attention(x, attention_mask, key_padding_mask)
|
| 554 |
+
|
| 555 |
+
# Feed-forward block
|
| 556 |
+
x = self.feed_forward(x)
|
| 557 |
+
|
| 558 |
+
return x
|
| 559 |
+
|
| 560 |
+
# LLM-Style Concrete Creep Transformer
|
| 561 |
+
class LLMConcreteModel(nn.Module):
|
| 562 |
+
def __init__(
|
| 563 |
+
self,
|
| 564 |
+
feature_dim,
|
| 565 |
+
d_model=128,
|
| 566 |
+
num_layers=6,
|
| 567 |
+
num_heads=8,
|
| 568 |
+
d_ff=512,
|
| 569 |
+
dropout=0.1,
|
| 570 |
+
target_len=1,
|
| 571 |
+
pooling_method='attention' # Options: 'mean', 'max', 'attention', 'weighted', 'hybrid'
|
| 572 |
+
):
|
| 573 |
+
super(LLMConcreteModel, self).__init__()
|
| 574 |
+
|
| 575 |
+
# Model dimensions
|
| 576 |
+
self.d_model = d_model
|
| 577 |
+
self.target_len = target_len
|
| 578 |
+
self.pooling_method = pooling_method
|
| 579 |
+
|
| 580 |
+
# Input embedding layers
|
| 581 |
+
self.creep_embedding = nn.Linear(1, d_model)
|
| 582 |
+
self.time_embedding = nn.Linear(1, d_model) if True else None # Optional time embedding
|
| 583 |
+
self.feature_encoder = FeatureEncoder(feature_dim, d_model, dropout)
|
| 584 |
+
|
| 585 |
+
# Positional encoding
|
| 586 |
+
self.positional_encoding = PositionalEncoding(d_model)
|
| 587 |
+
|
| 588 |
+
# Encoder layers
|
| 589 |
+
self.encoder_layers = nn.ModuleList([
|
| 590 |
+
EncoderLayer(d_model, num_heads, d_ff, dropout)
|
| 591 |
+
for _ in range(num_layers)
|
| 592 |
+
])
|
| 593 |
+
|
| 594 |
+
# Attention pooling layer for sequence tokens
|
| 595 |
+
self.attention_pooling = nn.Sequential(
|
| 596 |
+
nn.Linear(d_model, 1),
|
| 597 |
+
nn.Softmax(dim=1)
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
# Weighted pooling parameters
|
| 601 |
+
self.weighted_pool = nn.Linear(d_model, 1, bias=False)
|
| 602 |
+
|
| 603 |
+
# Hybrid pooling integration layer
|
| 604 |
+
self.hybrid_pooling_integration = nn.Linear(d_model * 3, d_model)
|
| 605 |
+
|
| 606 |
+
# Output layers for prediction
|
| 607 |
+
self.predictor = nn.Sequential(
|
| 608 |
+
nn.Linear(d_model, d_model),
|
| 609 |
+
nn.ReLU(),
|
| 610 |
+
nn.Dropout(dropout),
|
| 611 |
+
nn.Linear(d_model, target_len)
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
# Integration of features with sequence
|
| 615 |
+
self.feature_integration = nn.Linear(d_model * 2, d_model)
|
| 616 |
+
|
| 617 |
+
# Layer normalization
|
| 618 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 619 |
+
|
| 620 |
+
# Dropout
|
| 621 |
+
self.dropout = nn.Dropout(dropout)
|
| 622 |
+
|
| 623 |
+
def forward(self, creep_history, features, lengths, time_history=None):
|
| 624 |
+
# creep_history: [batch_size, max_seq_len]
|
| 625 |
+
# features: [batch_size, feature_dim]
|
| 626 |
+
# lengths: [batch_size] - actual sequence lengths
|
| 627 |
+
# time_history: [batch_size, max_seq_len] (optional)
|
| 628 |
+
|
| 629 |
+
# Get the device from input tensors to ensure consistent device usage
|
| 630 |
+
device = creep_history.device
|
| 631 |
+
|
| 632 |
+
batch_size, max_seq_len = creep_history.size()
|
| 633 |
+
|
| 634 |
+
# Create padding mask (1 for padding, 0 for actual values)
|
| 635 |
+
padding_mask = torch.arange(max_seq_len, device=device).unsqueeze(0) >= lengths.unsqueeze(1)
|
| 636 |
+
|
| 637 |
+
# Create attention mask to prevent looking at padding tokens
|
| 638 |
+
attention_mask = padding_mask.unsqueeze(1).expand(batch_size, max_seq_len, max_seq_len)
|
| 639 |
+
|
| 640 |
+
# Embed creep values
|
| 641 |
+
creep_embedded = self.creep_embedding(creep_history.unsqueeze(-1))
|
| 642 |
+
|
| 643 |
+
# Add time embedding if provided
|
| 644 |
+
if time_history is not None and self.time_embedding is not None:
|
| 645 |
+
time_embedded = self.time_embedding(time_history.unsqueeze(-1))
|
| 646 |
+
# Combine creep and time embeddings
|
| 647 |
+
embedded = creep_embedded + time_embedded
|
| 648 |
+
else:
|
| 649 |
+
embedded = creep_embedded
|
| 650 |
+
|
| 651 |
+
# Add positional encoding
|
| 652 |
+
embedded = self.positional_encoding(embedded)
|
| 653 |
+
|
| 654 |
+
# Apply dropout
|
| 655 |
+
embedded = self.dropout(embedded)
|
| 656 |
+
|
| 657 |
+
# Process feature data
|
| 658 |
+
feature_encoded = self.feature_encoder(features) # [batch_size, d_model]
|
| 659 |
+
|
| 660 |
+
# Pass through encoder layers
|
| 661 |
+
encoder_output = embedded
|
| 662 |
+
for layer in self.encoder_layers:
|
| 663 |
+
encoder_output = layer(encoder_output, key_padding_mask=padding_mask)
|
| 664 |
+
|
| 665 |
+
# USE ALL TOKENS: Apply pooling to aggregate information from all tokens
|
| 666 |
+
# Create a mask for padding (1 for real tokens, 0 for padding)
|
| 667 |
+
mask = ~padding_mask # [batch_size, seq_len]
|
| 668 |
+
|
| 669 |
+
if self.pooling_method == 'mean':
|
| 670 |
+
# Mean pooling with mask to handle variable sequence lengths
|
| 671 |
+
# Sum all non-padding token embeddings and divide by sequence length
|
| 672 |
+
mask_expanded = mask.unsqueeze(-1).float() # [batch_size, seq_len, 1]
|
| 673 |
+
context_vectors = torch.sum(encoder_output * mask_expanded, dim=1) / torch.sum(mask_expanded, dim=1)
|
| 674 |
+
|
| 675 |
+
elif self.pooling_method == 'max':
|
| 676 |
+
# Max pooling with mask to handle variable sequence lengths
|
| 677 |
+
# Use a large negative number for padding tokens
|
| 678 |
+
masked_output = encoder_output.clone()
|
| 679 |
+
masked_output[padding_mask.unsqueeze(-1).expand_as(masked_output)] = float('-inf')
|
| 680 |
+
context_vectors = torch.max(masked_output, dim=1)[0]
|
| 681 |
+
|
| 682 |
+
elif self.pooling_method == 'attention':
|
| 683 |
+
# Attention pooling
|
| 684 |
+
# Calculate attention weights for each token
|
| 685 |
+
attn_weights = self.attention_pooling(encoder_output) # [batch_size, seq_len, 1]
|
| 686 |
+
|
| 687 |
+
# Zero out attention for padding tokens
|
| 688 |
+
attn_weights = attn_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
|
| 689 |
+
|
| 690 |
+
# Normalize weights to sum to 1 (per batch)
|
| 691 |
+
attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8)
|
| 692 |
+
|
| 693 |
+
# Weighted sum of token embeddings
|
| 694 |
+
context_vectors = torch.sum(encoder_output * attn_weights, dim=1)
|
| 695 |
+
|
| 696 |
+
elif self.pooling_method == 'weighted':
|
| 697 |
+
# Weighted pooling considering sequence position
|
| 698 |
+
# Higher weights for later positions (more recent tokens)
|
| 699 |
+
position_weights = self.weighted_pool(encoder_output) # [batch_size, seq_len, 1]
|
| 700 |
+
|
| 701 |
+
# Apply softmax to get normalized weights
|
| 702 |
+
position_weights = torch.softmax(position_weights, dim=1)
|
| 703 |
+
|
| 704 |
+
# Zero out weights for padding tokens
|
| 705 |
+
position_weights = position_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
|
| 706 |
+
|
| 707 |
+
# Weighted sum of token embeddings
|
| 708 |
+
context_vectors = torch.sum(encoder_output * position_weights, dim=1)
|
| 709 |
+
|
| 710 |
+
elif self.pooling_method == 'hybrid':
|
| 711 |
+
# Hybrid pooling: combine multiple pooling methods
|
| 712 |
+
|
| 713 |
+
# 1. Mean pooling
|
| 714 |
+
mask_expanded = mask.unsqueeze(-1).float()
|
| 715 |
+
mean_vectors = torch.sum(encoder_output * mask_expanded, dim=1) / torch.sum(mask_expanded, dim=1)
|
| 716 |
+
|
| 717 |
+
# 2. Attention pooling
|
| 718 |
+
attn_weights = self.attention_pooling(encoder_output)
|
| 719 |
+
attn_weights = attn_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
|
| 720 |
+
attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8)
|
| 721 |
+
attn_vectors = torch.sum(encoder_output * attn_weights, dim=1)
|
| 722 |
+
|
| 723 |
+
# 3. Last token pooling (traditional approach)
|
| 724 |
+
last_indices = (lengths - 1).clamp(min=0)
|
| 725 |
+
batch_indices = torch.arange(batch_size, device=device)
|
| 726 |
+
last_vectors = encoder_output[batch_indices, last_indices]
|
| 727 |
+
|
| 728 |
+
# Combine all pooling methods with a learnable integration
|
| 729 |
+
combined_vectors = torch.cat([mean_vectors, attn_vectors, last_vectors], dim=1)
|
| 730 |
+
context_vectors = self.hybrid_pooling_integration(combined_vectors)
|
| 731 |
+
context_vectors = torch.tanh(context_vectors)
|
| 732 |
+
|
| 733 |
+
else:
|
| 734 |
+
# Default: use a combination of mean and attention
|
| 735 |
+
# Mean pooling component
|
| 736 |
+
mask_expanded = mask.unsqueeze(-1).float()
|
| 737 |
+
mean_vectors = torch.sum(encoder_output * mask_expanded, dim=1) / torch.sum(mask_expanded, dim=1)
|
| 738 |
+
|
| 739 |
+
# Attention pooling component
|
| 740 |
+
attn_weights = self.attention_pooling(encoder_output)
|
| 741 |
+
attn_weights = attn_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
|
| 742 |
+
attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8)
|
| 743 |
+
attn_vectors = torch.sum(encoder_output * attn_weights, dim=1)
|
| 744 |
+
|
| 745 |
+
# Combine both pooling methods
|
| 746 |
+
context_vectors = (mean_vectors + attn_vectors) / 2
|
| 747 |
+
|
| 748 |
+
# Combine context with features
|
| 749 |
+
combined = torch.cat([context_vectors, feature_encoded], dim=1) # [batch_size, d_model*2]
|
| 750 |
+
integrated = self.feature_integration(combined) # [batch_size, d_model]
|
| 751 |
+
integrated = torch.tanh(integrated)
|
| 752 |
+
|
| 753 |
+
# Final layer normalization
|
| 754 |
+
integrated = self.layer_norm(integrated)
|
| 755 |
+
|
| 756 |
+
# Generate predictions
|
| 757 |
+
predictions = self.predictor(integrated) # [batch_size, target_len]
|
| 758 |
+
|
| 759 |
+
return predictions
|
| 760 |
+
|
| 761 |
+
# Function to create padding mask for variable length sequences
|
| 762 |
+
def create_padding_mask(lengths, max_len):
|
| 763 |
+
"""
|
| 764 |
+
Create a mask for padding tokens (1 for padding, 0 for actual values)
|
| 765 |
+
|
| 766 |
+
Args:
|
| 767 |
+
lengths: Tensor of sequence lengths [batch_size]
|
| 768 |
+
max_len: Maximum sequence length
|
| 769 |
+
|
| 770 |
+
Returns:
|
| 771 |
+
Padding mask [batch_size, max_len]
|
| 772 |
+
"""
|
| 773 |
+
batch_size = lengths.size(0)
|
| 774 |
+
mask = torch.arange(max_len).unsqueeze(0) >= lengths.unsqueeze(1)
|
| 775 |
+
return mask
|
| 776 |
+
|
| 777 |
+
# Train the model
|
| 778 |
+
def train_model(model, train_loader, optimizer, criterion, device, clip=1.0):
|
| 779 |
+
model.train()
|
| 780 |
+
epoch_loss = 0
|
| 781 |
+
num_batches = 0
|
| 782 |
+
|
| 783 |
+
for batch_idx, batch in enumerate(train_loader):
|
| 784 |
+
try:
|
| 785 |
+
if len(batch) == 5: # With time data
|
| 786 |
+
histories, targets, features, times, lengths = [item.to(device) for item in batch]
|
| 787 |
+
|
| 788 |
+
# Forward pass
|
| 789 |
+
optimizer.zero_grad()
|
| 790 |
+
outputs = model(histories, features, lengths, times)
|
| 791 |
+
else: # Without time data
|
| 792 |
+
histories, targets, features, lengths = [item.to(device) for item in batch]
|
| 793 |
+
|
| 794 |
+
# Forward pass
|
| 795 |
+
optimizer.zero_grad()
|
| 796 |
+
outputs = model(histories, features, lengths)
|
| 797 |
+
|
| 798 |
+
# Calculate loss
|
| 799 |
+
loss = criterion(outputs, targets)
|
| 800 |
+
|
| 801 |
+
# Backward pass
|
| 802 |
+
loss.backward()
|
| 803 |
+
|
| 804 |
+
# Clip gradients
|
| 805 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
|
| 806 |
+
|
| 807 |
+
optimizer.step()
|
| 808 |
+
|
| 809 |
+
epoch_loss += loss.item()
|
| 810 |
+
num_batches += 1
|
| 811 |
+
|
| 812 |
+
except Exception as e:
|
| 813 |
+
print(f"Error in batch {batch_idx}: {str(e)}")
|
| 814 |
+
continue
|
| 815 |
+
|
| 816 |
+
return epoch_loss / max(1, num_batches)
|
| 817 |
+
|
| 818 |
+
# Evaluate the model
|
| 819 |
+
def evaluate_model(model, test_loader, criterion, device):
|
| 820 |
+
model.eval()
|
| 821 |
+
epoch_loss = 0
|
| 822 |
+
num_batches = 0
|
| 823 |
+
|
| 824 |
+
# For calculating MAPE and MAE
|
| 825 |
+
all_targets = []
|
| 826 |
+
all_outputs = []
|
| 827 |
+
|
| 828 |
+
with torch.no_grad():
|
| 829 |
+
for batch_idx, batch in enumerate(test_loader):
|
| 830 |
+
try:
|
| 831 |
+
if len(batch) == 5: # With time data
|
| 832 |
+
histories, targets, features, times, lengths = [item.to(device) for item in batch]
|
| 833 |
+
outputs = model(histories, features, lengths, times)
|
| 834 |
+
else: # Without time data
|
| 835 |
+
histories, targets, features, lengths = [item.to(device) for item in batch]
|
| 836 |
+
outputs = model(histories, features, lengths)
|
| 837 |
+
|
| 838 |
+
# Calculate loss
|
| 839 |
+
loss = criterion(outputs, targets)
|
| 840 |
+
|
| 841 |
+
epoch_loss += loss.item()
|
| 842 |
+
num_batches += 1
|
| 843 |
+
|
| 844 |
+
# Store targets and outputs for MAPE calculation
|
| 845 |
+
all_targets.append(targets.cpu())
|
| 846 |
+
all_outputs.append(outputs.cpu())
|
| 847 |
+
|
| 848 |
+
except Exception as e:
|
| 849 |
+
print(f"Error in evaluation batch {batch_idx}: {str(e)}")
|
| 850 |
+
continue
|
| 851 |
+
|
| 852 |
+
# Calculate MAPE and MAE if we have data
|
| 853 |
+
mape = None
|
| 854 |
+
mae = None
|
| 855 |
+
if all_targets and all_outputs:
|
| 856 |
+
try:
|
| 857 |
+
# Concatenate all batches
|
| 858 |
+
all_targets = torch.cat(all_targets)
|
| 859 |
+
all_outputs = torch.cat(all_outputs)
|
| 860 |
+
|
| 861 |
+
# Calculate MAE (Mean Absolute Error)
|
| 862 |
+
mae = torch.abs(all_targets - all_outputs).mean().item()
|
| 863 |
+
|
| 864 |
+
# Calculate MAPE, avoiding division by zero
|
| 865 |
+
# Add small epsilon to avoid division by zero
|
| 866 |
+
epsilon = 1e-8
|
| 867 |
+
abs_percentage_errors = torch.abs((all_targets - all_outputs) / (all_targets + epsilon)) * 100
|
| 868 |
+
|
| 869 |
+
# Filter out invalid values (where target is very close to zero)
|
| 870 |
+
valid_indices = torch.abs(all_targets) > epsilon
|
| 871 |
+
if valid_indices.sum() > 0:
|
| 872 |
+
mape = abs_percentage_errors[valid_indices].mean().item()
|
| 873 |
+
else:
|
| 874 |
+
mape = float('nan')
|
| 875 |
+
except Exception as e:
|
| 876 |
+
print(f"Error calculating metrics: {str(e)}")
|
| 877 |
+
mape = float('nan')
|
| 878 |
+
mae = float('nan')
|
| 879 |
+
|
| 880 |
+
return epoch_loss / max(1, num_batches), mape, mae
|
| 881 |
+
|
| 882 |
+
# Function to predict using the full history
|
| 883 |
+
def predict_with_full_history(model, creep_history, features, creep_scaler, device, time_history=None):
|
| 884 |
+
model.eval()
|
| 885 |
+
|
| 886 |
+
with torch.no_grad():
|
| 887 |
+
# Convert inputs to tensors
|
| 888 |
+
creep_tensor = torch.FloatTensor(creep_history).unsqueeze(0).to(device) # [1, seq_len]
|
| 889 |
+
features_tensor = torch.FloatTensor(features).unsqueeze(0).to(device) # [1, feature_dim]
|
| 890 |
+
lengths = torch.tensor([len(creep_history)]).to(device) # [1]
|
| 891 |
+
|
| 892 |
+
if time_history is not None:
|
| 893 |
+
time_tensor = torch.FloatTensor(time_history).unsqueeze(0).to(device) # [1, seq_len]
|
| 894 |
+
predictions = model(creep_tensor, features_tensor, lengths, time_tensor)
|
| 895 |
+
else:
|
| 896 |
+
predictions = model(creep_tensor, features_tensor, lengths)
|
| 897 |
+
|
| 898 |
+
# Convert predictions to numpy and denormalize
|
| 899 |
+
predictions_np = predictions.cpu().numpy()[0] # [target_len]
|
| 900 |
+
predictions_denorm = creep_scaler.inverse_transform(
|
| 901 |
+
predictions_np.reshape(-1, 1)
|
| 902 |
+
).flatten()
|
| 903 |
+
|
| 904 |
+
return predictions_denorm
|
| 905 |
+
|
| 906 |
+
# Visualize predictions for a test sample
|
| 907 |
+
def visualize_predictions(model, test_loader, creep_scaler, device, sample_idx=0):
|
| 908 |
+
# Get a batch from the test loader
|
| 909 |
+
for i, batch in enumerate(test_loader):
|
| 910 |
+
if i == sample_idx // test_loader.batch_size:
|
| 911 |
+
idx_in_batch = sample_idx % test_loader.batch_size
|
| 912 |
+
|
| 913 |
+
if len(batch) == 5: # With time data
|
| 914 |
+
histories, targets, features, times, lengths = batch
|
| 915 |
+
history = histories[idx_in_batch, :lengths[idx_in_batch]].numpy()
|
| 916 |
+
time_history = times[idx_in_batch, :lengths[idx_in_batch]].numpy()
|
| 917 |
+
feature = features[idx_in_batch].numpy()
|
| 918 |
+
target = targets[idx_in_batch].numpy()
|
| 919 |
+
|
| 920 |
+
# Get predictions
|
| 921 |
+
predictions = predict_with_full_history(
|
| 922 |
+
model, history, feature, creep_scaler, device, time_history
|
| 923 |
+
)
|
| 924 |
+
|
| 925 |
+
# Get actual time values (denormalize from log scale)
|
| 926 |
+
time_values = np.exp(time_history) - 1 # Reverse of log1p
|
| 927 |
+
else: # Without time data
|
| 928 |
+
histories, targets, features, lengths = batch
|
| 929 |
+
history = histories[idx_in_batch, :lengths[idx_in_batch]].numpy()
|
| 930 |
+
feature = features[idx_in_batch].numpy()
|
| 931 |
+
target = targets[idx_in_batch].numpy()
|
| 932 |
+
|
| 933 |
+
# Get predictions
|
| 934 |
+
predictions = predict_with_full_history(
|
| 935 |
+
model, history, feature, creep_scaler, device
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
# Create sequential time steps for plotting
|
| 939 |
+
time_values = np.arange(1, len(history) + 1)
|
| 940 |
+
|
| 941 |
+
# Denormalize target and history
|
| 942 |
+
target_denorm = creep_scaler.inverse_transform(
|
| 943 |
+
target.reshape(-1, 1)
|
| 944 |
+
).flatten()
|
| 945 |
+
|
| 946 |
+
history_denorm = creep_scaler.inverse_transform(
|
| 947 |
+
history.reshape(-1, 1)
|
| 948 |
+
).flatten()
|
| 949 |
+
|
| 950 |
+
# Get time steps for predictions and targets
|
| 951 |
+
# If we have actual time values, use the last time point plus regular intervals
|
| 952 |
+
history_time = time_values
|
| 953 |
+
|
| 954 |
+
if len(time_values) > 0:
|
| 955 |
+
# If we have time data, we need to extrapolate for prediction times
|
| 956 |
+
time_step = 1.0
|
| 957 |
+
if len(time_values) > 1:
|
| 958 |
+
# Estimate time step from the last two points
|
| 959 |
+
time_step = time_values[-1] - time_values[-2]
|
| 960 |
+
|
| 961 |
+
# Generate future time points for predictions/targets
|
| 962 |
+
target_time = np.array([time_values[-1] + time_step * (i+1) for i in range(len(target))])
|
| 963 |
+
pred_time = np.array([time_values[-1] + time_step * (i+1) for i in range(len(predictions))])
|
| 964 |
+
else:
|
| 965 |
+
# If no time data, use sequential indices
|
| 966 |
+
target_time = np.arange(len(history) + 1, len(history) + len(target) + 1)
|
| 967 |
+
pred_time = np.arange(len(history) + 1, len(history) + len(predictions) + 1)
|
| 968 |
+
|
| 969 |
+
# Plot results
|
| 970 |
+
plt.figure(figsize=(10, 6))
|
| 971 |
+
plt.plot(history_time, history_denorm, 'b-', label='Historical Data')
|
| 972 |
+
plt.plot(target_time, target_denorm, 'g-', label='Actual Future')
|
| 973 |
+
plt.plot(pred_time, predictions, 'r--', label='Predictions')
|
| 974 |
+
plt.legend()
|
| 975 |
+
plt.title('Concrete Creep Prediction with Full History')
|
| 976 |
+
plt.xlabel('Time')
|
| 977 |
+
plt.ylabel('Creep Value')
|
| 978 |
+
plt.grid(True)
|
| 979 |
+
plt.savefig('llm_prediction_results.png')
|
| 980 |
+
plt.close()
|
| 981 |
+
|
| 982 |
+
return history_denorm, target_denorm, predictions
|
| 983 |
+
|
| 984 |
+
print("Sample index out of range")
|
| 985 |
+
return None, None, None
|
| 986 |
+
|
| 987 |
+
# Utility function to examine data structure
|
| 988 |
+
def examine_data_structure():
|
| 989 |
+
"""
|
| 990 |
+
Examine the structure of the creep and feature files
|
| 991 |
+
to help with debugging and data understanding
|
| 992 |
+
"""
|
| 993 |
+
print("Examining data structure...")
|
| 994 |
+
|
| 995 |
+
# Load the creep file
|
| 996 |
+
try:
|
| 997 |
+
df_creep = pd.read_excel(EXCEL_CREEP_FILE)
|
| 998 |
+
print(f"\nCreep file shape: {df_creep.shape}")
|
| 999 |
+
print(f"Format: {df_creep.shape[0]} time points (rows) × {df_creep.shape[1]} samples (columns)")
|
| 1000 |
+
|
| 1001 |
+
# Check if first column might be time values
|
| 1002 |
+
first_col = df_creep.columns[0]
|
| 1003 |
+
if first_col in ['time', 'Time', 'TIME', 't', 'T', 'day', 'Day', 'DAY', 'd', 'D'] or str(first_col).lower().startswith(('time', 'day')):
|
| 1004 |
+
print(f"First column '{first_col}' recognized as time values")
|
| 1005 |
+
print(f"Time values sample: {df_creep.iloc[:5, 0].tolist()}")
|
| 1006 |
+
print(f"Actual samples start from column 1")
|
| 1007 |
+
else:
|
| 1008 |
+
print(f"First column '{first_col}' not recognized as time, but treating rows as time points")
|
| 1009 |
+
print(f"Assuming all columns are samples")
|
| 1010 |
+
|
| 1011 |
+
# Show a sample of the data
|
| 1012 |
+
print(f"First 5 rows (time points) and 3 columns (samples):")
|
| 1013 |
+
print(df_creep.iloc[:5, :3])
|
| 1014 |
+
|
| 1015 |
+
# Count NaN values
|
| 1016 |
+
nan_count = df_creep.isna().sum().sum()
|
| 1017 |
+
print(f"Total NaN values: {nan_count}")
|
| 1018 |
+
|
| 1019 |
+
except Exception as e:
|
| 1020 |
+
print(f"Error examining creep file: {str(e)}")
|
| 1021 |
+
|
| 1022 |
+
# Load the feature file
|
| 1023 |
+
try:
|
| 1024 |
+
df_features = pd.read_excel(EXCEL_FEATURE_FILE, sheet_name='Sheet2')
|
| 1025 |
+
print(f"\nFeature file shape: {df_features.shape}")
|
| 1026 |
+
print(f"Feature file columns: {df_features.columns.tolist()}")
|
| 1027 |
+
print(f"Feature sample (first 3 rows):")
|
| 1028 |
+
print(df_features.iloc[:3])
|
| 1029 |
+
|
| 1030 |
+
# Ensure it has the right number of rows to match sample count
|
| 1031 |
+
if df_features.shape[0] != df_creep.shape[1]:
|
| 1032 |
+
print(f"WARNING: Feature count ({df_features.shape[0]} rows) does not match sample count in creep file ({df_creep.shape[1]} columns)")
|
| 1033 |
+
else:
|
| 1034 |
+
print(f"Feature rows ({df_features.shape[0]}) matches sample count in creep file ({df_creep.shape[1]} columns)")
|
| 1035 |
+
except Exception as e:
|
| 1036 |
+
print(f"Error examining feature file: {str(e)}")
|
| 1037 |
+
|
| 1038 |
+
print("\nData examination complete.")
|
| 1039 |
+
|
| 1040 |
+
# Add a function to calculate detailed performance metrics on test data
|
| 1041 |
+
def calculate_detailed_metrics(model, test_loader, creep_scaler, device):
|
| 1042 |
+
"""
|
| 1043 |
+
Calculate detailed performance metrics on the test dataset.
|
| 1044 |
+
Returns actual and predicted values in their original scale along with metrics.
|
| 1045 |
+
"""
|
| 1046 |
+
model.eval()
|
| 1047 |
+
all_targets_norm = []
|
| 1048 |
+
all_outputs_norm = []
|
| 1049 |
+
all_targets_denorm = []
|
| 1050 |
+
all_outputs_denorm = []
|
| 1051 |
+
|
| 1052 |
+
with torch.no_grad():
|
| 1053 |
+
for batch_idx, batch in enumerate(test_loader):
|
| 1054 |
+
try:
|
| 1055 |
+
if len(batch) == 5: # With time data
|
| 1056 |
+
histories, targets, features, times, lengths = [item.to(device) for item in batch]
|
| 1057 |
+
outputs = model(histories, features, lengths, times)
|
| 1058 |
+
else: # Without time data
|
| 1059 |
+
histories, targets, features, lengths = [item.to(device) for item in batch]
|
| 1060 |
+
outputs = model(histories, features, lengths)
|
| 1061 |
+
|
| 1062 |
+
# Store normalized values
|
| 1063 |
+
all_targets_norm.append(targets.cpu())
|
| 1064 |
+
all_outputs_norm.append(outputs.cpu())
|
| 1065 |
+
|
| 1066 |
+
# Denormalize for actual metrics
|
| 1067 |
+
for i in range(len(targets)):
|
| 1068 |
+
target = targets[i].cpu().numpy()
|
| 1069 |
+
output = outputs[i].cpu().numpy()
|
| 1070 |
+
|
| 1071 |
+
# Reshape for inverse_transform
|
| 1072 |
+
target_denorm = creep_scaler.inverse_transform(target.reshape(-1, 1)).flatten()
|
| 1073 |
+
output_denorm = creep_scaler.inverse_transform(output.reshape(-1, 1)).flatten()
|
| 1074 |
+
|
| 1075 |
+
all_targets_denorm.extend(target_denorm)
|
| 1076 |
+
all_outputs_denorm.extend(output_denorm)
|
| 1077 |
+
|
| 1078 |
+
except Exception as e:
|
| 1079 |
+
print(f"Error in batch {batch_idx}: {str(e)}")
|
| 1080 |
+
continue
|
| 1081 |
+
|
| 1082 |
+
# Convert to numpy arrays
|
| 1083 |
+
all_targets_denorm = np.array(all_targets_denorm)
|
| 1084 |
+
all_outputs_denorm = np.array(all_outputs_denorm)
|
| 1085 |
+
|
| 1086 |
+
# Calculate metrics on denormalized data
|
| 1087 |
+
mse = np.mean((all_targets_denorm - all_outputs_denorm) ** 2)
|
| 1088 |
+
rmse = np.sqrt(mse)
|
| 1089 |
+
mae = np.mean(np.abs(all_targets_denorm - all_outputs_denorm))
|
| 1090 |
+
|
| 1091 |
+
# Calculate MAPE, avoiding division by zero
|
| 1092 |
+
epsilon = 1e-8
|
| 1093 |
+
mask = np.abs(all_targets_denorm) > epsilon
|
| 1094 |
+
mape = np.mean(np.abs((all_targets_denorm[mask] - all_outputs_denorm[mask]) / (all_targets_denorm[mask]))) * 100
|
| 1095 |
+
|
| 1096 |
+
# Calculate R²
|
| 1097 |
+
ss_total = np.sum((all_targets_denorm - np.mean(all_targets_denorm)) ** 2)
|
| 1098 |
+
ss_residual = np.sum((all_targets_denorm - all_outputs_denorm) ** 2)
|
| 1099 |
+
r_squared = 1 - (ss_residual / ss_total) if ss_total > 0 else 0
|
| 1100 |
+
|
| 1101 |
+
# Print detailed metrics
|
| 1102 |
+
print("\n===== Detailed Performance Metrics =====")
|
| 1103 |
+
print(f"MSE: {mse:.6f}")
|
| 1104 |
+
print(f"RMSE: {rmse:.6f}")
|
| 1105 |
+
print(f"MAE: {mae:.6f}")
|
| 1106 |
+
print(f"MAPE: {mape:.2f}%")
|
| 1107 |
+
print(f"R²: {r_squared:.6f}")
|
| 1108 |
+
|
| 1109 |
+
return {
|
| 1110 |
+
"targets": all_targets_denorm,
|
| 1111 |
+
"predictions": all_outputs_denorm,
|
| 1112 |
+
"mse": mse,
|
| 1113 |
+
"rmse": rmse,
|
| 1114 |
+
"mae": mae,
|
| 1115 |
+
"mape": mape,
|
| 1116 |
+
"r_squared": r_squared
|
| 1117 |
+
}
|
| 1118 |
+
|
| 1119 |
+
# Main function
|
| 1120 |
+
def main():
|
| 1121 |
+
print("\n" + "="*80)
|
| 1122 |
+
print("CONCRETE CREEP PREDICTION MODEL WITH LLM-STYLE FULL HISTORY PROCESSING")
|
| 1123 |
+
print("="*80 + "\n")
|
| 1124 |
+
|
| 1125 |
+
# Parameters - Updated with Bayesian optimization results
|
| 1126 |
+
TARGET_LEN = 1 # Length of prediction horizon
|
| 1127 |
+
D_MODEL = 192 # Model dimension (was 128)
|
| 1128 |
+
NUM_LAYERS = 4 # Number of transformer layers (was 6)
|
| 1129 |
+
NUM_HEADS = 4 # Number of attention heads (was 8)
|
| 1130 |
+
BATCH_SIZE = 128 # Batch size (was 200)
|
| 1131 |
+
LEARNING_RATE = 0.0001897931493931044 # Learning rate (was 0.001)
|
| 1132 |
+
WEIGHT_DECAY = 5.552376124031933e-06 # Weight decay (was 1e-5)
|
| 1133 |
+
DROPOUT = 0.056999223340150215 # Dropout rate for model initialization (new parameter)
|
| 1134 |
+
NUM_EPOCHS = 200
|
| 1135 |
+
POOLING_METHOD = 'hybrid' # Using the hybrid pooling method which combines multiple approaches
|
| 1136 |
+
|
| 1137 |
+
# Set device
|
| 1138 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 1139 |
+
print(f"Using device: {device}")
|
| 1140 |
+
|
| 1141 |
+
# Set memory handling for GPU if available
|
| 1142 |
+
if device.type == 'cuda':
|
| 1143 |
+
print("Managing GPU memory settings...")
|
| 1144 |
+
# Empty cache to start fresh
|
| 1145 |
+
torch.cuda.empty_cache()
|
| 1146 |
+
|
| 1147 |
+
# Get GPU memory info
|
| 1148 |
+
if hasattr(torch.cuda, 'get_device_properties'):
|
| 1149 |
+
prop = torch.cuda.get_device_properties(device)
|
| 1150 |
+
print(f"GPU: {prop.name} with {prop.total_memory / 1024**3:.2f} GB memory")
|
| 1151 |
+
|
| 1152 |
+
try:
|
| 1153 |
+
# Examine data structure first for debugging
|
| 1154 |
+
examine_data_structure()
|
| 1155 |
+
|
| 1156 |
+
# Prepare data
|
| 1157 |
+
print("\nPreparing data...")
|
| 1158 |
+
train_dataset, val_dataset, test_dataset, feature_scaler, creep_scaler = prepare_llm_data(
|
| 1159 |
+
target_len=TARGET_LEN
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
print(f"Training samples: {len(train_dataset)}")
|
| 1163 |
+
print(f"Validation samples: {len(val_dataset)}")
|
| 1164 |
+
print(f"Testing samples: {len(test_dataset)}")
|
| 1165 |
+
|
| 1166 |
+
# Adjust batch size if needed
|
| 1167 |
+
adjusted_batch_size = min(BATCH_SIZE, len(train_dataset), len(val_dataset), len(test_dataset))
|
| 1168 |
+
if adjusted_batch_size < BATCH_SIZE:
|
| 1169 |
+
print(f"Adjusting batch size from {BATCH_SIZE} to {adjusted_batch_size} due to small dataset")
|
| 1170 |
+
BATCH_SIZE = adjusted_batch_size
|
| 1171 |
+
|
| 1172 |
+
# Create data loaders
|
| 1173 |
+
print(f"Creating dataloaders with batch size {BATCH_SIZE}...")
|
| 1174 |
+
train_loader = DataLoader(
|
| 1175 |
+
train_dataset,
|
| 1176 |
+
batch_size=BATCH_SIZE,
|
| 1177 |
+
shuffle=True,
|
| 1178 |
+
collate_fn=collate_fn,
|
| 1179 |
+
drop_last=False,
|
| 1180 |
+
pin_memory=True if device.type == 'cuda' else False # Faster data transfer to GPU
|
| 1181 |
+
)
|
| 1182 |
+
|
| 1183 |
+
val_loader = DataLoader(
|
| 1184 |
+
val_dataset,
|
| 1185 |
+
batch_size=BATCH_SIZE,
|
| 1186 |
+
shuffle=False,
|
| 1187 |
+
collate_fn=collate_fn,
|
| 1188 |
+
drop_last=False,
|
| 1189 |
+
pin_memory=True if device.type == 'cuda' else False # Faster data transfer to GPU
|
| 1190 |
+
)
|
| 1191 |
+
|
| 1192 |
+
test_loader = DataLoader(
|
| 1193 |
+
test_dataset,
|
| 1194 |
+
batch_size=BATCH_SIZE,
|
| 1195 |
+
shuffle=False,
|
| 1196 |
+
collate_fn=collate_fn,
|
| 1197 |
+
drop_last=False,
|
| 1198 |
+
pin_memory=True if device.type == 'cuda' else False # Faster data transfer to GPU
|
| 1199 |
+
)
|
| 1200 |
+
|
| 1201 |
+
# Get feature dimension
|
| 1202 |
+
feature_dim = train_dataset[0][2].shape[0]
|
| 1203 |
+
print(f"Feature dimension: {feature_dim}")
|
| 1204 |
+
|
| 1205 |
+
# Initialize model
|
| 1206 |
+
print("\nInitializing model...")
|
| 1207 |
+
print(f"Using pooling method: {POOLING_METHOD}")
|
| 1208 |
+
model = LLMConcreteModel(
|
| 1209 |
+
feature_dim=feature_dim,
|
| 1210 |
+
d_model=D_MODEL,
|
| 1211 |
+
num_layers=NUM_LAYERS,
|
| 1212 |
+
num_heads=NUM_HEADS,
|
| 1213 |
+
d_ff=D_MODEL * 4,
|
| 1214 |
+
dropout=DROPOUT, # Using the optimized dropout value
|
| 1215 |
+
target_len=TARGET_LEN,
|
| 1216 |
+
pooling_method=POOLING_METHOD # Set the pooling method
|
| 1217 |
+
)
|
| 1218 |
+
|
| 1219 |
+
# Move model to device
|
| 1220 |
+
model = model.to(device)
|
| 1221 |
+
|
| 1222 |
+
print(f"Model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
| 1223 |
+
|
| 1224 |
+
# Define optimizer and loss
|
| 1225 |
+
optimizer = optim.AdamW(
|
| 1226 |
+
model.parameters(),
|
| 1227 |
+
lr=LEARNING_RATE,
|
| 1228 |
+
weight_decay=WEIGHT_DECAY
|
| 1229 |
+
)
|
| 1230 |
+
criterion = nn.MSELoss()
|
| 1231 |
+
|
| 1232 |
+
# Learning rate scheduler
|
| 1233 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
|
| 1234 |
+
optimizer,
|
| 1235 |
+
mode='min',
|
| 1236 |
+
factor=0.5,
|
| 1237 |
+
patience=5,
|
| 1238 |
+
verbose=True
|
| 1239 |
+
)
|
| 1240 |
+
|
| 1241 |
+
# Training loop
|
| 1242 |
+
print("\nStarting training...")
|
| 1243 |
+
train_losses = []
|
| 1244 |
+
val_losses = []
|
| 1245 |
+
val_mapes = [] # Track MAPE values
|
| 1246 |
+
best_val_loss = float('inf')
|
| 1247 |
+
|
| 1248 |
+
for epoch in range(NUM_EPOCHS):
|
| 1249 |
+
try:
|
| 1250 |
+
# Train
|
| 1251 |
+
train_loss = train_model(model, train_loader, optimizer, criterion, device)
|
| 1252 |
+
train_losses.append(train_loss)
|
| 1253 |
+
|
| 1254 |
+
# Evaluate
|
| 1255 |
+
val_loss, val_mape, val_mae = evaluate_model(model, val_loader, criterion, device)
|
| 1256 |
+
val_losses.append(val_loss)
|
| 1257 |
+
val_mapes.append(val_mape if val_mape is not None else float('nan'))
|
| 1258 |
+
|
| 1259 |
+
# Update learning rate
|
| 1260 |
+
scheduler.step(val_loss)
|
| 1261 |
+
|
| 1262 |
+
# Print progress
|
| 1263 |
+
print(f"Epoch {epoch+1}/{NUM_EPOCHS}, Train Loss: {train_loss:.6f}, Val Loss: {val_loss:.6f}, MAPE: {val_mape:.2f}%, MAE: {val_mae:.6f}")
|
| 1264 |
+
|
| 1265 |
+
# Save best model
|
| 1266 |
+
if val_loss < best_val_loss:
|
| 1267 |
+
best_val_loss = val_loss
|
| 1268 |
+
torch.save(model.state_dict(), 'best_llm_model.pt')
|
| 1269 |
+
print(f"Best model saved (Epoch {epoch+1})")
|
| 1270 |
+
|
| 1271 |
+
# Periodically clear GPU cache
|
| 1272 |
+
if device.type == 'cuda' and (epoch + 1) % 5 == 0:
|
| 1273 |
+
torch.cuda.empty_cache()
|
| 1274 |
+
|
| 1275 |
+
except RuntimeError as e:
|
| 1276 |
+
if 'out of memory' in str(e).lower():
|
| 1277 |
+
print(f"WARNING: GPU out of memory at epoch {epoch+1}. Attempting to recover...")
|
| 1278 |
+
if device.type == 'cuda':
|
| 1279 |
+
torch.cuda.empty_cache()
|
| 1280 |
+
# Try reducing batch size
|
| 1281 |
+
if BATCH_SIZE > 1:
|
| 1282 |
+
BATCH_SIZE = BATCH_SIZE // 2
|
| 1283 |
+
print(f"Reducing batch size to {BATCH_SIZE}")
|
| 1284 |
+
|
| 1285 |
+
# Recreate dataloaders with new batch size
|
| 1286 |
+
train_loader = DataLoader(
|
| 1287 |
+
train_dataset,
|
| 1288 |
+
batch_size=BATCH_SIZE,
|
| 1289 |
+
shuffle=True,
|
| 1290 |
+
collate_fn=collate_fn,
|
| 1291 |
+
drop_last=False,
|
| 1292 |
+
pin_memory=True
|
| 1293 |
+
)
|
| 1294 |
+
|
| 1295 |
+
val_loader = DataLoader(
|
| 1296 |
+
val_dataset,
|
| 1297 |
+
batch_size=BATCH_SIZE,
|
| 1298 |
+
shuffle=False,
|
| 1299 |
+
collate_fn=collate_fn,
|
| 1300 |
+
drop_last=False,
|
| 1301 |
+
pin_memory=True
|
| 1302 |
+
)
|
| 1303 |
+
|
| 1304 |
+
test_loader = DataLoader(
|
| 1305 |
+
test_dataset,
|
| 1306 |
+
batch_size=BATCH_SIZE,
|
| 1307 |
+
shuffle=False,
|
| 1308 |
+
collate_fn=collate_fn,
|
| 1309 |
+
drop_last=False,
|
| 1310 |
+
pin_memory=True
|
| 1311 |
+
)
|
| 1312 |
+
|
| 1313 |
+
# Continue with reduced batch size
|
| 1314 |
+
continue
|
| 1315 |
+
else:
|
| 1316 |
+
print("ERROR: Batch size already at minimum. Cannot recover.")
|
| 1317 |
+
break
|
| 1318 |
+
else:
|
| 1319 |
+
print(f"ERROR during training: {str(e)}")
|
| 1320 |
+
break
|
| 1321 |
+
|
| 1322 |
+
# Save final model at the last epoch
|
| 1323 |
+
torch.save(model.state_dict(), 'final_llm_model.pt')
|
| 1324 |
+
print(f"Final model saved at epoch {NUM_EPOCHS}")
|
| 1325 |
+
|
| 1326 |
+
# Plot loss curves with MAPE
|
| 1327 |
+
print("\nPlotting loss curves and MAPE...")
|
| 1328 |
+
|
| 1329 |
+
# Create a figure with two subplots
|
| 1330 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
|
| 1331 |
+
|
| 1332 |
+
# Plot losses on the first subplot
|
| 1333 |
+
ax1.plot(train_losses, label='Training Loss')
|
| 1334 |
+
ax1.plot(val_losses, label='Validation Loss')
|
| 1335 |
+
ax1.set_xlabel('Epoch')
|
| 1336 |
+
ax1.set_ylabel('Loss (MSE)')
|
| 1337 |
+
ax1.set_title('Training and Validation Loss')
|
| 1338 |
+
ax1.legend()
|
| 1339 |
+
ax1.grid(True)
|
| 1340 |
+
|
| 1341 |
+
# Plot MAPE on the second subplot
|
| 1342 |
+
ax2.plot(val_mapes, 'r-', label='Validation MAPE')
|
| 1343 |
+
ax2.set_xlabel('Epoch')
|
| 1344 |
+
ax2.set_ylabel('MAPE (%)')
|
| 1345 |
+
ax2.set_title('Validation Mean Absolute Percentage Error')
|
| 1346 |
+
ax2.legend()
|
| 1347 |
+
ax2.grid(True)
|
| 1348 |
+
|
| 1349 |
+
plt.tight_layout()
|
| 1350 |
+
plt.savefig('llm_loss_and_mape_curves.png')
|
| 1351 |
+
plt.close()
|
| 1352 |
+
|
| 1353 |
+
# Also save the traditional loss curve plot
|
| 1354 |
+
plt.figure(figsize=(10, 6))
|
| 1355 |
+
plt.plot(train_losses, label='Training Loss')
|
| 1356 |
+
plt.plot(val_losses, label='Validation Loss')
|
| 1357 |
+
plt.xlabel('Epoch')
|
| 1358 |
+
plt.ylabel('Loss')
|
| 1359 |
+
plt.title('Training and Validation Loss (LLM Model)')
|
| 1360 |
+
plt.legend()
|
| 1361 |
+
plt.grid(True)
|
| 1362 |
+
plt.savefig('llm_loss_curves.png')
|
| 1363 |
+
plt.close()
|
| 1364 |
+
|
| 1365 |
+
#==================================================
|
| 1366 |
+
# COMPREHENSIVE EVALUATION ON TEST SET
|
| 1367 |
+
#==================================================
|
| 1368 |
+
print("\n" + "="*80)
|
| 1369 |
+
print("COMPREHENSIVE EVALUATION ON TEST SET")
|
| 1370 |
+
print("="*80)
|
| 1371 |
+
|
| 1372 |
+
# Load final model
|
| 1373 |
+
print("\nEvaluating final model...")
|
| 1374 |
+
model.load_state_dict(torch.load('final_llm_model.pt', map_location=device))
|
| 1375 |
+
|
| 1376 |
+
# Calculate metrics for final model
|
| 1377 |
+
final_test_loss, final_test_mape, final_test_mae = evaluate_model(model, test_loader, criterion, device)
|
| 1378 |
+
print(f"Final model metrics - MSE: {final_test_loss:.6f}, MAPE: {final_test_mape:.2f}%, MAE: {final_test_mae:.6f}")
|
| 1379 |
+
|
| 1380 |
+
# Calculate detailed metrics for final model
|
| 1381 |
+
print("\nDetailed metrics for final model:")
|
| 1382 |
+
final_metrics = calculate_detailed_metrics(model, test_loader, creep_scaler, device)
|
| 1383 |
+
|
| 1384 |
+
# Visualize predictions for final model
|
| 1385 |
+
for sample_idx in range(min(3, len(test_loader.dataset))):
|
| 1386 |
+
history, target, predictions = visualize_predictions(
|
| 1387 |
+
model, test_loader, creep_scaler, device, sample_idx=sample_idx
|
| 1388 |
+
)
|
| 1389 |
+
|
| 1390 |
+
if history is not None:
|
| 1391 |
+
print(f"\nSample {sample_idx+1} (Final Model):")
|
| 1392 |
+
print(f"Target values: {target}")
|
| 1393 |
+
print(f"Predictions: {predictions}")
|
| 1394 |
+
plt.savefig(f'final_model_prediction_sample_{sample_idx+1}.png')
|
| 1395 |
+
|
| 1396 |
+
# Load best model
|
| 1397 |
+
print("\nEvaluating best model...")
|
| 1398 |
+
model.load_state_dict(torch.load('best_llm_model.pt', map_location=device))
|
| 1399 |
+
|
| 1400 |
+
# Calculate metrics for best model
|
| 1401 |
+
best_test_loss, best_test_mape, best_test_mae = evaluate_model(model, test_loader, criterion, device)
|
| 1402 |
+
print(f"Best model metrics - MSE: {best_test_loss:.6f}, MAPE: {best_test_mape:.2f}%, MAE: {best_test_mae:.6f}")
|
| 1403 |
+
|
| 1404 |
+
# Calculate detailed metrics for best model
|
| 1405 |
+
print("\nDetailed metrics for best model:")
|
| 1406 |
+
best_metrics = calculate_detailed_metrics(model, test_loader, creep_scaler, device)
|
| 1407 |
+
|
| 1408 |
+
# Visualize predictions for best model
|
| 1409 |
+
for sample_idx in range(min(3, len(test_loader.dataset))):
|
| 1410 |
+
history, target, predictions = visualize_predictions(
|
| 1411 |
+
model, test_loader, creep_scaler, device, sample_idx=sample_idx
|
| 1412 |
+
)
|
| 1413 |
+
|
| 1414 |
+
if history is not None:
|
| 1415 |
+
print(f"\nSample {sample_idx+1} (Best Model):")
|
| 1416 |
+
print(f"Target values: {target}")
|
| 1417 |
+
print(f"Predictions: {predictions}")
|
| 1418 |
+
plt.savefig(f'best_model_prediction_sample_{sample_idx+1}.png')
|
| 1419 |
+
|
| 1420 |
+
# Compare models
|
| 1421 |
+
print("\n" + "="*50)
|
| 1422 |
+
print("MODEL COMPARISON")
|
| 1423 |
+
print("="*50)
|
| 1424 |
+
print(f" Final Model Best Model")
|
| 1425 |
+
print(f"MSE: {final_metrics['mse']:.6f} {best_metrics['mse']:.6f}")
|
| 1426 |
+
print(f"RMSE: {final_metrics['rmse']:.6f} {best_metrics['rmse']:.6f}")
|
| 1427 |
+
print(f"MAE: {final_metrics['mae']:.6f} {best_metrics['mae']:.6f}")
|
| 1428 |
+
print(f"MAPE: {final_metrics['mape']:.2f}% {best_metrics['mape']:.2f}%")
|
| 1429 |
+
print(f"R²: {final_metrics['r_squared']:.6f} {best_metrics['r_squared']:.6f}")
|
| 1430 |
+
|
| 1431 |
+
print("\nTraining and evaluation complete!")
|
| 1432 |
+
|
| 1433 |
+
except Exception as e:
|
| 1434 |
+
print(f"\nERROR: {str(e)}")
|
| 1435 |
+
import traceback
|
| 1436 |
+
traceback.print_exc()
|
| 1437 |
+
print("\nExiting due to error.")
|
| 1438 |
+
|
| 1439 |
+
if __name__ == "__main__":
|
| 1440 |
+
main()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,7 @@
|
|
| 1 |
-
|
| 2 |
pandas
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
pandas
|
| 3 |
+
numpy
|
| 4 |
+
torch
|
| 5 |
+
matplotlib
|
| 6 |
+
scikit-learn
|
| 7 |
+
pickle-mixin
|
scalers/creep_scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49eb729dbb94ff0fd794b7ae0964cc99d1784d105c9bb73e6578febbe855346f
|
| 3 |
+
size 103
|
scalers/feature_scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6f523c19eb563cc6e1256d7857fd5e8c175efbe9f74827cea05e1ee5bd8b46e1
|
| 3 |
+
size 627
|
scalers/time_values.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34ef684159bebd9bebec6be8188fa46acb5f8a8893acd7fedc8d04223f5ceb4b
|
| 3 |
+
size 1438
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,385 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import pickle
|
| 7 |
+
import os
|
| 8 |
+
import warnings
|
| 9 |
+
from lllm_model_all_token import LLMConcreteModel
|
| 10 |
+
|
| 11 |
+
# Optimize for deployment
|
| 12 |
+
warnings.filterwarnings('ignore')
|
| 13 |
+
torch.set_num_threads(2)
|
| 14 |
+
|
| 15 |
+
# Canva-style colors
|
| 16 |
+
CANVA_PURPLE = "#8B5CF6"
|
| 17 |
+
CANVA_LIGHT_PURPLE = "#A78BFA"
|
| 18 |
+
CANVA_DARK_PURPLE = "#7C3AED"
|
| 19 |
+
CANVA_BACKGROUND = "#FAFAFA"
|
| 20 |
+
CANVA_WHITE = "#FFFFFF"
|
| 21 |
+
|
| 22 |
+
# Set page config with Canva-style theme
|
| 23 |
+
st.set_page_config(
|
| 24 |
+
page_title="Concrete Creep Prediction",
|
| 25 |
+
page_icon="🏗️",
|
| 26 |
+
layout="centered",
|
| 27 |
+
initial_sidebar_state="collapsed"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Custom CSS for Canva-style design
|
| 31 |
+
st.markdown(f"""
|
| 32 |
+
<style>
|
| 33 |
+
.main {{
|
| 34 |
+
background-color: {CANVA_BACKGROUND};
|
| 35 |
+
}}
|
| 36 |
+
|
| 37 |
+
.stApp {{
|
| 38 |
+
background-color: {CANVA_BACKGROUND};
|
| 39 |
+
}}
|
| 40 |
+
|
| 41 |
+
.css-1d391kg {{
|
| 42 |
+
background-color: {CANVA_WHITE};
|
| 43 |
+
padding: 2rem;
|
| 44 |
+
border-radius: 15px;
|
| 45 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 46 |
+
margin: 1rem 0;
|
| 47 |
+
}}
|
| 48 |
+
|
| 49 |
+
.stButton > button {{
|
| 50 |
+
background-color: {CANVA_PURPLE};
|
| 51 |
+
color: white;
|
| 52 |
+
border: none;
|
| 53 |
+
border-radius: 25px;
|
| 54 |
+
padding: 0.75rem 2rem;
|
| 55 |
+
font-weight: 600;
|
| 56 |
+
font-size: 16px;
|
| 57 |
+
transition: all 0.3s ease;
|
| 58 |
+
width: 100%;
|
| 59 |
+
}}
|
| 60 |
+
|
| 61 |
+
.stButton > button:hover {{
|
| 62 |
+
background-color: {CANVA_DARK_PURPLE};
|
| 63 |
+
transform: translateY(-2px);
|
| 64 |
+
box-shadow: 0 4px 12px rgba(139, 92, 246, 0.3);
|
| 65 |
+
}}
|
| 66 |
+
|
| 67 |
+
.stNumberInput > div > div > input {{
|
| 68 |
+
border-radius: 10px;
|
| 69 |
+
border: 2px solid #E5E7EB;
|
| 70 |
+
padding: 0.75rem;
|
| 71 |
+
}}
|
| 72 |
+
|
| 73 |
+
.stNumberInput > div > div > input:focus {{
|
| 74 |
+
border-color: {CANVA_PURPLE};
|
| 75 |
+
box-shadow: 0 0 0 3px rgba(139, 92, 246, 0.1);
|
| 76 |
+
}}
|
| 77 |
+
|
| 78 |
+
.metric-card {{
|
| 79 |
+
background: linear-gradient(135deg, {CANVA_PURPLE}, {CANVA_LIGHT_PURPLE});
|
| 80 |
+
color: white;
|
| 81 |
+
padding: 1.5rem;
|
| 82 |
+
border-radius: 15px;
|
| 83 |
+
text-align: center;
|
| 84 |
+
margin: 0.5rem 0;
|
| 85 |
+
}}
|
| 86 |
+
|
| 87 |
+
.result-card {{
|
| 88 |
+
background-color: {CANVA_WHITE};
|
| 89 |
+
padding: 2rem;
|
| 90 |
+
border-radius: 15px;
|
| 91 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 92 |
+
margin: 1rem 0;
|
| 93 |
+
}}
|
| 94 |
+
|
| 95 |
+
h1 {{
|
| 96 |
+
color: {CANVA_DARK_PURPLE};
|
| 97 |
+
text-align: center;
|
| 98 |
+
font-weight: 700;
|
| 99 |
+
margin-bottom: 2rem;
|
| 100 |
+
}}
|
| 101 |
+
|
| 102 |
+
h2, h3 {{
|
| 103 |
+
color: {CANVA_DARK_PURPLE};
|
| 104 |
+
font-weight: 600;
|
| 105 |
+
}}
|
| 106 |
+
|
| 107 |
+
.stSuccess {{
|
| 108 |
+
background-color: #10B981;
|
| 109 |
+
color: white;
|
| 110 |
+
border-radius: 10px;
|
| 111 |
+
}}
|
| 112 |
+
</style>
|
| 113 |
+
""", unsafe_allow_html=True)
|
| 114 |
+
|
| 115 |
+
# Simple CreepScaler class
|
| 116 |
+
class CreepScaler:
|
| 117 |
+
def __init__(self, factor=1000):
|
| 118 |
+
self.factor = factor
|
| 119 |
+
self.mean_ = 0
|
| 120 |
+
self.scale_ = factor
|
| 121 |
+
self.is_standard_scaler = False
|
| 122 |
+
|
| 123 |
+
def transform(self, X):
|
| 124 |
+
if self.is_standard_scaler:
|
| 125 |
+
return (X - self.mean_) / self.scale_
|
| 126 |
+
return X / self.factor
|
| 127 |
+
|
| 128 |
+
def inverse_transform(self, X):
|
| 129 |
+
if self.is_standard_scaler:
|
| 130 |
+
return (X * self.scale_) + self.mean_
|
| 131 |
+
return X * self.factor
|
| 132 |
+
|
| 133 |
+
@st.cache_resource
|
| 134 |
+
def load_model():
|
| 135 |
+
"""Load model and scalers"""
|
| 136 |
+
# Find model file
|
| 137 |
+
model_files = ['best_llm_model-17.pt', 'final_llm_model-5.pt']
|
| 138 |
+
model_path = None
|
| 139 |
+
for file in model_files:
|
| 140 |
+
if os.path.exists(file):
|
| 141 |
+
model_path = file
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
if model_path is None:
|
| 145 |
+
st.error("❌ Model file not found")
|
| 146 |
+
st.stop()
|
| 147 |
+
|
| 148 |
+
# Load scalers
|
| 149 |
+
try:
|
| 150 |
+
with open('scalers/feature_scaler.pkl', 'rb') as f:
|
| 151 |
+
feature_scaler = pickle.load(f)
|
| 152 |
+
|
| 153 |
+
try:
|
| 154 |
+
with open('scalers/creep_scaler.pkl', 'rb') as f:
|
| 155 |
+
creep_scaler = pickle.load(f)
|
| 156 |
+
except:
|
| 157 |
+
creep_scaler = CreepScaler(factor=1000)
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
with open('scalers/time_values.pkl', 'rb') as f:
|
| 161 |
+
time_values = pickle.load(f)
|
| 162 |
+
except:
|
| 163 |
+
time_values = np.arange(1, 1001) # Default 1000 time points
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
st.error(f"❌ Error loading files: {e}")
|
| 167 |
+
st.stop()
|
| 168 |
+
|
| 169 |
+
# Load model
|
| 170 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 171 |
+
model = LLMConcreteModel(
|
| 172 |
+
feature_dim=3,
|
| 173 |
+
d_model=192,
|
| 174 |
+
num_layers=4,
|
| 175 |
+
num_heads=4,
|
| 176 |
+
d_ff=768,
|
| 177 |
+
dropout=0.057,
|
| 178 |
+
target_len=1,
|
| 179 |
+
pooling_method='hybrid'
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
try:
|
| 183 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 184 |
+
model = model.to(device)
|
| 185 |
+
model.eval()
|
| 186 |
+
except Exception as e:
|
| 187 |
+
st.error(f"❌ Error loading model: {e}")
|
| 188 |
+
st.stop()
|
| 189 |
+
|
| 190 |
+
return model, feature_scaler, creep_scaler, time_values, device
|
| 191 |
+
|
| 192 |
+
def predict_creep(model, features, time_values, feature_scaler, creep_scaler, device, max_days=365):
|
| 193 |
+
"""Simple prediction function"""
|
| 194 |
+
# Scale features
|
| 195 |
+
scaled_features = feature_scaler.transform(features)
|
| 196 |
+
scaled_features_tensor = torch.FloatTensor(scaled_features).to(device)
|
| 197 |
+
|
| 198 |
+
# Limit time values
|
| 199 |
+
pred_time_values = time_values[:max_days] if max_days < len(time_values) else time_values
|
| 200 |
+
|
| 201 |
+
predictions = [0.0] # Start with 0
|
| 202 |
+
scaled_predictions = [0.0]
|
| 203 |
+
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
for i in range(1, len(pred_time_values)):
|
| 206 |
+
history = np.array(scaled_predictions)
|
| 207 |
+
history_tensor = torch.FloatTensor(history).unsqueeze(0).to(device)
|
| 208 |
+
|
| 209 |
+
time_history = np.log1p(pred_time_values[:i])
|
| 210 |
+
time_tensor = torch.FloatTensor(time_history).unsqueeze(0).to(device)
|
| 211 |
+
|
| 212 |
+
length = torch.tensor([len(history)], device=device)
|
| 213 |
+
|
| 214 |
+
next_value = model(
|
| 215 |
+
creep_history=history_tensor,
|
| 216 |
+
features=scaled_features_tensor,
|
| 217 |
+
lengths=length,
|
| 218 |
+
time_history=time_tensor
|
| 219 |
+
).item()
|
| 220 |
+
|
| 221 |
+
scaled_predictions.append(next_value)
|
| 222 |
+
next_creep = creep_scaler.inverse_transform(np.array([[next_value]])).flatten()[0]
|
| 223 |
+
predictions.append(next_creep)
|
| 224 |
+
|
| 225 |
+
return np.array(predictions), pred_time_values
|
| 226 |
+
|
| 227 |
+
# Load model
|
| 228 |
+
model, feature_scaler, creep_scaler, time_values, device = load_model()
|
| 229 |
+
|
| 230 |
+
def get_base64_of_image(path):
|
| 231 |
+
"""Convert image to base64 string"""
|
| 232 |
+
import base64
|
| 233 |
+
try:
|
| 234 |
+
with open(path, "rb") as img_file:
|
| 235 |
+
return base64.b64encode(img_file.read()).decode()
|
| 236 |
+
except:
|
| 237 |
+
return ""
|
| 238 |
+
|
| 239 |
+
# App title with logo
|
| 240 |
+
st.markdown("""
|
| 241 |
+
<div style='text-align: center; padding: 2rem 0;'>
|
| 242 |
+
<div style='display: flex; justify-content: center; align-items: center; margin-bottom: 1.5rem; flex-wrap: wrap;'>
|
| 243 |
+
<img src='data:image/png;base64,{}' style='width: 120px; height: auto; max-height: 100px; margin-right: 1.5rem; margin-bottom: 1rem; border-radius: 10px; box-shadow: 0 4px 12px rgba(139, 92, 246, 0.2); object-fit: contain;'>
|
| 244 |
+
<div style='text-align: center;'>
|
| 245 |
+
<h1 style='margin: 0; color: {}; font-size: 2.5rem; font-weight: 700;'>🏗️ Concrete Creep Prediction</h1>
|
| 246 |
+
<p style='margin: 0; font-size: 18px; color: #6B7280; font-weight: 500;'>AI-Powered Concrete Analysis</p>
|
| 247 |
+
</div>
|
| 248 |
+
</div>
|
| 249 |
+
</div>
|
| 250 |
+
""".format(
|
| 251 |
+
get_base64_of_image("AI_logo.png"),
|
| 252 |
+
CANVA_DARK_PURPLE
|
| 253 |
+
), unsafe_allow_html=True)
|
| 254 |
+
|
| 255 |
+
# Input form in a clean card
|
| 256 |
+
with st.container():
|
| 257 |
+
st.markdown('<div class="css-1d391kg">', unsafe_allow_html=True)
|
| 258 |
+
|
| 259 |
+
st.markdown("### 📝 Enter Concrete Properties")
|
| 260 |
+
|
| 261 |
+
col1, col2 = st.columns(2)
|
| 262 |
+
|
| 263 |
+
with col1:
|
| 264 |
+
density = st.number_input(
|
| 265 |
+
"Density (kg/m³)",
|
| 266 |
+
min_value=2000.0,
|
| 267 |
+
max_value=3000.0,
|
| 268 |
+
value=2490.0,
|
| 269 |
+
step=10.0
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
fc = st.number_input(
|
| 273 |
+
"Compressive Strength (ksc)",
|
| 274 |
+
min_value=10.0,
|
| 275 |
+
max_value=1000.0,
|
| 276 |
+
value=670.0,
|
| 277 |
+
step=10.0
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
with col2:
|
| 281 |
+
e_modulus = st.number_input(
|
| 282 |
+
"Elastic Modulus (ksc)",
|
| 283 |
+
min_value=10000.0,
|
| 284 |
+
max_value=1000000.0,
|
| 285 |
+
value=436000.0,
|
| 286 |
+
step=1000.0
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
# Predict button
|
| 292 |
+
if st.button("🚀 Predict Creep Strain"):
|
| 293 |
+
# Set default prediction days
|
| 294 |
+
max_days = 365
|
| 295 |
+
|
| 296 |
+
# Create features
|
| 297 |
+
features_dict = {
|
| 298 |
+
'Density': density,
|
| 299 |
+
'fc': fc,
|
| 300 |
+
'E': e_modulus
|
| 301 |
+
}
|
| 302 |
+
df_features = pd.DataFrame([features_dict])
|
| 303 |
+
|
| 304 |
+
# Run prediction
|
| 305 |
+
with st.spinner("🔄 Predicting..."):
|
| 306 |
+
try:
|
| 307 |
+
predictions, pred_time_values = predict_creep(
|
| 308 |
+
model, df_features, time_values,
|
| 309 |
+
feature_scaler, creep_scaler, device, max_days
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Results
|
| 313 |
+
st.markdown('<div class="result-card">', unsafe_allow_html=True)
|
| 314 |
+
|
| 315 |
+
# Key metrics
|
| 316 |
+
col1, col2 = st.columns(2)
|
| 317 |
+
with col1:
|
| 318 |
+
st.markdown(f"""
|
| 319 |
+
<div class="metric-card">
|
| 320 |
+
<h3>{predictions[-1]:.1f}</h3>
|
| 321 |
+
<p>Final Creep (µε)</p>
|
| 322 |
+
</div>
|
| 323 |
+
""", unsafe_allow_html=True)
|
| 324 |
+
|
| 325 |
+
with col2:
|
| 326 |
+
st.markdown(f"""
|
| 327 |
+
<div class="metric-card">
|
| 328 |
+
<h3>{np.max(predictions):.1f}</h3>
|
| 329 |
+
<p>Maximum Creep (µε)</p>
|
| 330 |
+
</div>
|
| 331 |
+
""", unsafe_allow_html=True)
|
| 332 |
+
|
| 333 |
+
# Simple plot
|
| 334 |
+
st.markdown("### 📊 Creep Strain Over Time")
|
| 335 |
+
|
| 336 |
+
# Set plot style to match Canva theme
|
| 337 |
+
plt.style.use('default')
|
| 338 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 339 |
+
fig.patch.set_facecolor('white')
|
| 340 |
+
|
| 341 |
+
ax.plot(pred_time_values, predictions,
|
| 342 |
+
color=CANVA_PURPLE, linewidth=3, alpha=0.8)
|
| 343 |
+
ax.fill_between(pred_time_values, predictions,
|
| 344 |
+
alpha=0.2, color=CANVA_LIGHT_PURPLE)
|
| 345 |
+
|
| 346 |
+
ax.set_xlabel('Time (days)', fontsize=12, color='#374151')
|
| 347 |
+
ax.set_ylabel('Creep Strain (µε)', fontsize=12, color='#374151')
|
| 348 |
+
ax.grid(True, alpha=0.3, color='#E5E7EB')
|
| 349 |
+
ax.set_facecolor('#FAFAFA')
|
| 350 |
+
|
| 351 |
+
# Remove top and right spines
|
| 352 |
+
ax.spines['top'].set_visible(False)
|
| 353 |
+
ax.spines['right'].set_visible(False)
|
| 354 |
+
ax.spines['left'].set_color('#E5E7EB')
|
| 355 |
+
ax.spines['bottom'].set_color('#E5E7EB')
|
| 356 |
+
|
| 357 |
+
plt.tight_layout()
|
| 358 |
+
st.pyplot(fig)
|
| 359 |
+
|
| 360 |
+
# Download data
|
| 361 |
+
results_df = pd.DataFrame({
|
| 362 |
+
'Time (days)': pred_time_values,
|
| 363 |
+
'Creep Strain (µε)': predictions
|
| 364 |
+
})
|
| 365 |
+
|
| 366 |
+
csv = results_df.to_csv(index=False)
|
| 367 |
+
st.download_button(
|
| 368 |
+
label="💾 Download Results",
|
| 369 |
+
data=csv,
|
| 370 |
+
file_name="creep_predictions.csv",
|
| 371 |
+
mime="text/csv"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
st.error(f"❌ Prediction failed: {e}")
|
| 378 |
|
| 379 |
+
# Simple footer
|
| 380 |
+
st.markdown("""
|
| 381 |
+
<div style='text-align: center; padding: 2rem 0; color: #9CA3AF;'>
|
| 382 |
+
<p>🏗️ Concrete Creep Prediction Tool</p>
|
| 383 |
+
<p style='margin-top: 0.5rem; font-size: 14px;'>Developed by <strong>CIFIR</strong> and <strong>AI Research Group KMUTT</strong></p>
|
| 384 |
+
</div>
|
| 385 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start_app.sh
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
echo "🏗️ Enhanced Concrete Creep Prediction App - Startup Script"
|
| 4 |
+
echo "=========================================================="
|
| 5 |
+
|
| 6 |
+
# Check if Python is installed
|
| 7 |
+
if ! command -v python &> /dev/null; then
|
| 8 |
+
echo "❌ Python is not installed. Please install Python 3.8 or higher."
|
| 9 |
+
exit 1
|
| 10 |
+
fi
|
| 11 |
+
|
| 12 |
+
# Check Python version
|
| 13 |
+
PYTHON_VERSION=$(python -c 'import sys; print(".".join(map(str, sys.version_info[:2])))')
|
| 14 |
+
echo "🐍 Python version: $PYTHON_VERSION"
|
| 15 |
+
|
| 16 |
+
# Check if pip is installed
|
| 17 |
+
if ! command -v pip &> /dev/null; then
|
| 18 |
+
echo "❌ pip is not installed. Please install pip."
|
| 19 |
+
exit 1
|
| 20 |
+
fi
|
| 21 |
+
|
| 22 |
+
# Install dependencies
|
| 23 |
+
echo "📦 Installing dependencies..."
|
| 24 |
+
pip install -r requirements.txt
|
| 25 |
+
|
| 26 |
+
if [ $? -ne 0 ]; then
|
| 27 |
+
echo "❌ Failed to install dependencies. Please check requirements.txt"
|
| 28 |
+
exit 1
|
| 29 |
+
fi
|
| 30 |
+
|
| 31 |
+
echo "✅ Dependencies installed successfully!"
|
| 32 |
+
|
| 33 |
+
# Check if model files exist
|
| 34 |
+
if [ ! -f "best_llm_model-17.pt" ] && [ ! -f "final_llm_model-5.pt" ]; then
|
| 35 |
+
echo "❌ No model files found. Please ensure model files are present."
|
| 36 |
+
exit 1
|
| 37 |
+
fi
|
| 38 |
+
|
| 39 |
+
# Check if scalers directory exists
|
| 40 |
+
if [ ! -d "scalers" ]; then
|
| 41 |
+
echo "❌ Scalers directory not found. Please ensure scalers directory is present."
|
| 42 |
+
exit 1
|
| 43 |
+
fi
|
| 44 |
+
|
| 45 |
+
echo "✅ All files verified!"
|
| 46 |
+
echo "🚀 Starting Streamlit app..."
|
| 47 |
+
echo ""
|
| 48 |
+
echo "The app will be available at:"
|
| 49 |
+
echo " Local URL: http://localhost:8501"
|
| 50 |
+
echo " Network URL: http://$(hostname -I | awk '{print $1}'):8501"
|
| 51 |
+
echo ""
|
| 52 |
+
echo "Press Ctrl+C to stop the application"
|
| 53 |
+
echo ""
|
| 54 |
+
|
| 55 |
+
# Start the Streamlit app
|
| 56 |
+
streamlit run app.py
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import pickle
|
| 7 |
+
import os
|
| 8 |
+
import warnings
|
| 9 |
+
from lllm_model_all_token import LLMConcreteModel
|
| 10 |
+
|
| 11 |
+
# Optimize for deployment
|
| 12 |
+
warnings.filterwarnings('ignore')
|
| 13 |
+
torch.set_num_threads(2)
|
| 14 |
+
|
| 15 |
+
# Canva-style colors
|
| 16 |
+
CANVA_PURPLE = "#8B5CF6"
|
| 17 |
+
CANVA_LIGHT_PURPLE = "#A78BFA"
|
| 18 |
+
CANVA_DARK_PURPLE = "#7C3AED"
|
| 19 |
+
CANVA_BACKGROUND = "#FAFAFA"
|
| 20 |
+
CANVA_WHITE = "#FFFFFF"
|
| 21 |
+
|
| 22 |
+
# Set page config with Canva-style theme
|
| 23 |
+
st.set_page_config(
|
| 24 |
+
page_title="Concrete Creep Prediction",
|
| 25 |
+
page_icon="🏗️",
|
| 26 |
+
layout="centered",
|
| 27 |
+
initial_sidebar_state="collapsed"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Custom CSS for Canva-style design
|
| 31 |
+
st.markdown(f"""
|
| 32 |
+
<style>
|
| 33 |
+
.main {{
|
| 34 |
+
background-color: {CANVA_BACKGROUND};
|
| 35 |
+
}}
|
| 36 |
+
|
| 37 |
+
.stApp {{
|
| 38 |
+
background-color: {CANVA_BACKGROUND};
|
| 39 |
+
}}
|
| 40 |
+
|
| 41 |
+
.css-1d391kg {{
|
| 42 |
+
background-color: {CANVA_WHITE};
|
| 43 |
+
padding: 2rem;
|
| 44 |
+
border-radius: 15px;
|
| 45 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 46 |
+
margin: 1rem 0;
|
| 47 |
+
}}
|
| 48 |
+
|
| 49 |
+
.stButton > button {{
|
| 50 |
+
background-color: {CANVA_PURPLE};
|
| 51 |
+
color: white;
|
| 52 |
+
border: none;
|
| 53 |
+
border-radius: 25px;
|
| 54 |
+
padding: 0.75rem 2rem;
|
| 55 |
+
font-weight: 600;
|
| 56 |
+
font-size: 16px;
|
| 57 |
+
transition: all 0.3s ease;
|
| 58 |
+
width: 100%;
|
| 59 |
+
}}
|
| 60 |
+
|
| 61 |
+
.stButton > button:hover {{
|
| 62 |
+
background-color: {CANVA_DARK_PURPLE};
|
| 63 |
+
transform: translateY(-2px);
|
| 64 |
+
box-shadow: 0 4px 12px rgba(139, 92, 246, 0.3);
|
| 65 |
+
}}
|
| 66 |
+
|
| 67 |
+
.stNumberInput > div > div > input {{
|
| 68 |
+
border-radius: 10px;
|
| 69 |
+
border: 2px solid #E5E7EB;
|
| 70 |
+
padding: 0.75rem;
|
| 71 |
+
}}
|
| 72 |
+
|
| 73 |
+
.stNumberInput > div > div > input:focus {{
|
| 74 |
+
border-color: {CANVA_PURPLE};
|
| 75 |
+
box-shadow: 0 0 0 3px rgba(139, 92, 246, 0.1);
|
| 76 |
+
}}
|
| 77 |
+
|
| 78 |
+
.metric-card {{
|
| 79 |
+
background: linear-gradient(135deg, {CANVA_PURPLE}, {CANVA_LIGHT_PURPLE});
|
| 80 |
+
color: white;
|
| 81 |
+
padding: 1.5rem;
|
| 82 |
+
border-radius: 15px;
|
| 83 |
+
text-align: center;
|
| 84 |
+
margin: 0.5rem 0;
|
| 85 |
+
}}
|
| 86 |
+
|
| 87 |
+
.result-card {{
|
| 88 |
+
background-color: {CANVA_WHITE};
|
| 89 |
+
padding: 2rem;
|
| 90 |
+
border-radius: 15px;
|
| 91 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 92 |
+
margin: 1rem 0;
|
| 93 |
+
}}
|
| 94 |
+
|
| 95 |
+
h1 {{
|
| 96 |
+
color: {CANVA_DARK_PURPLE};
|
| 97 |
+
text-align: center;
|
| 98 |
+
font-weight: 700;
|
| 99 |
+
margin-bottom: 2rem;
|
| 100 |
+
}}
|
| 101 |
+
|
| 102 |
+
h2, h3 {{
|
| 103 |
+
color: {CANVA_DARK_PURPLE};
|
| 104 |
+
font-weight: 600;
|
| 105 |
+
}}
|
| 106 |
+
|
| 107 |
+
.stSuccess {{
|
| 108 |
+
background-color: #10B981;
|
| 109 |
+
color: white;
|
| 110 |
+
border-radius: 10px;
|
| 111 |
+
}}
|
| 112 |
+
</style>
|
| 113 |
+
""", unsafe_allow_html=True)
|
| 114 |
+
|
| 115 |
+
# Simple CreepScaler class
|
| 116 |
+
class CreepScaler:
|
| 117 |
+
def __init__(self, factor=1000):
|
| 118 |
+
self.factor = factor
|
| 119 |
+
self.mean_ = 0
|
| 120 |
+
self.scale_ = factor
|
| 121 |
+
self.is_standard_scaler = False
|
| 122 |
+
|
| 123 |
+
def transform(self, X):
|
| 124 |
+
if self.is_standard_scaler:
|
| 125 |
+
return (X - self.mean_) / self.scale_
|
| 126 |
+
return X / self.factor
|
| 127 |
+
|
| 128 |
+
def inverse_transform(self, X):
|
| 129 |
+
if self.is_standard_scaler:
|
| 130 |
+
return (X * self.scale_) + self.mean_
|
| 131 |
+
return X * self.factor
|
| 132 |
+
|
| 133 |
+
@st.cache_resource
|
| 134 |
+
def load_model():
|
| 135 |
+
"""Load model and scalers"""
|
| 136 |
+
# Find model file
|
| 137 |
+
model_files = ['best_llm_model-17.pt', 'final_llm_model-5.pt']
|
| 138 |
+
model_path = None
|
| 139 |
+
for file in model_files:
|
| 140 |
+
if os.path.exists(file):
|
| 141 |
+
model_path = file
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
if model_path is None:
|
| 145 |
+
st.error("❌ Model file not found")
|
| 146 |
+
st.stop()
|
| 147 |
+
|
| 148 |
+
# Load scalers
|
| 149 |
+
try:
|
| 150 |
+
with open('scalers/feature_scaler.pkl', 'rb') as f:
|
| 151 |
+
feature_scaler = pickle.load(f)
|
| 152 |
+
|
| 153 |
+
try:
|
| 154 |
+
with open('scalers/creep_scaler.pkl', 'rb') as f:
|
| 155 |
+
creep_scaler = pickle.load(f)
|
| 156 |
+
except:
|
| 157 |
+
creep_scaler = CreepScaler(factor=1000)
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
with open('scalers/time_values.pkl', 'rb') as f:
|
| 161 |
+
time_values = pickle.load(f)
|
| 162 |
+
except:
|
| 163 |
+
time_values = np.arange(1, 1001) # Default 1000 time points
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
st.error(f"❌ Error loading files: {e}")
|
| 167 |
+
st.stop()
|
| 168 |
+
|
| 169 |
+
# Load model
|
| 170 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 171 |
+
model = LLMConcreteModel(
|
| 172 |
+
feature_dim=3,
|
| 173 |
+
d_model=192,
|
| 174 |
+
num_layers=4,
|
| 175 |
+
num_heads=4,
|
| 176 |
+
d_ff=768,
|
| 177 |
+
dropout=0.057,
|
| 178 |
+
target_len=1,
|
| 179 |
+
pooling_method='hybrid'
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
try:
|
| 183 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 184 |
+
model = model.to(device)
|
| 185 |
+
model.eval()
|
| 186 |
+
except Exception as e:
|
| 187 |
+
st.error(f"❌ Error loading model: {e}")
|
| 188 |
+
st.stop()
|
| 189 |
+
|
| 190 |
+
return model, feature_scaler, creep_scaler, time_values, device
|
| 191 |
+
|
| 192 |
+
def predict_creep(model, features, time_values, feature_scaler, creep_scaler, device, max_days=365):
|
| 193 |
+
"""Simple prediction function"""
|
| 194 |
+
# Scale features
|
| 195 |
+
scaled_features = feature_scaler.transform(features)
|
| 196 |
+
scaled_features_tensor = torch.FloatTensor(scaled_features).to(device)
|
| 197 |
+
|
| 198 |
+
# Limit time values
|
| 199 |
+
pred_time_values = time_values[:max_days] if max_days < len(time_values) else time_values
|
| 200 |
+
|
| 201 |
+
predictions = [0.0] # Start with 0
|
| 202 |
+
scaled_predictions = [0.0]
|
| 203 |
+
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
for i in range(1, len(pred_time_values)):
|
| 206 |
+
history = np.array(scaled_predictions)
|
| 207 |
+
history_tensor = torch.FloatTensor(history).unsqueeze(0).to(device)
|
| 208 |
+
|
| 209 |
+
time_history = np.log1p(pred_time_values[:i])
|
| 210 |
+
time_tensor = torch.FloatTensor(time_history).unsqueeze(0).to(device)
|
| 211 |
+
|
| 212 |
+
length = torch.tensor([len(history)], device=device)
|
| 213 |
+
|
| 214 |
+
next_value = model(
|
| 215 |
+
creep_history=history_tensor,
|
| 216 |
+
features=scaled_features_tensor,
|
| 217 |
+
lengths=length,
|
| 218 |
+
time_history=time_tensor
|
| 219 |
+
).item()
|
| 220 |
+
|
| 221 |
+
scaled_predictions.append(next_value)
|
| 222 |
+
next_creep = creep_scaler.inverse_transform(np.array([[next_value]])).flatten()[0]
|
| 223 |
+
predictions.append(next_creep)
|
| 224 |
+
|
| 225 |
+
return np.array(predictions), pred_time_values
|
| 226 |
+
|
| 227 |
+
# Load model
|
| 228 |
+
model, feature_scaler, creep_scaler, time_values, device = load_model()
|
| 229 |
+
|
| 230 |
+
def get_base64_of_image(path):
|
| 231 |
+
"""Convert image to base64 string"""
|
| 232 |
+
import base64
|
| 233 |
+
try:
|
| 234 |
+
with open(path, "rb") as img_file:
|
| 235 |
+
return base64.b64encode(img_file.read()).decode()
|
| 236 |
+
except:
|
| 237 |
+
return ""
|
| 238 |
+
|
| 239 |
+
# App title with logo
|
| 240 |
+
st.markdown("""
|
| 241 |
+
<div style='text-align: center; padding: 2rem 0;'>
|
| 242 |
+
<div style='display: flex; justify-content: center; align-items: center; margin-bottom: 1.5rem; flex-wrap: wrap;'>
|
| 243 |
+
<img src='data:image/png;base64,{}' style='width: 120px; height: auto; max-height: 100px; margin-right: 1.5rem; margin-bottom: 1rem; border-radius: 10px; box-shadow: 0 4px 12px rgba(139, 92, 246, 0.2); object-fit: contain;'>
|
| 244 |
+
<div style='text-align: center;'>
|
| 245 |
+
<h1 style='margin: 0; color: {}; font-size: 2.5rem; font-weight: 700;'>🏗️ Concrete Creep Prediction</h1>
|
| 246 |
+
<p style='margin: 0; font-size: 18px; color: #6B7280; font-weight: 500;'>AI-Powered Concrete Analysis</p>
|
| 247 |
+
</div>
|
| 248 |
+
</div>
|
| 249 |
+
</div>
|
| 250 |
+
""".format(
|
| 251 |
+
get_base64_of_image("AI_logo.png"),
|
| 252 |
+
CANVA_DARK_PURPLE
|
| 253 |
+
), unsafe_allow_html=True)
|
| 254 |
+
|
| 255 |
+
# Input form in a clean card
|
| 256 |
+
with st.container():
|
| 257 |
+
st.markdown('<div class="css-1d391kg">', unsafe_allow_html=True)
|
| 258 |
+
|
| 259 |
+
st.markdown("### 📝 Enter Concrete Properties")
|
| 260 |
+
|
| 261 |
+
col1, col2 = st.columns(2)
|
| 262 |
+
|
| 263 |
+
with col1:
|
| 264 |
+
density = st.number_input(
|
| 265 |
+
"Density (kg/m³)",
|
| 266 |
+
min_value=2000.0,
|
| 267 |
+
max_value=3000.0,
|
| 268 |
+
value=2490.0,
|
| 269 |
+
step=10.0
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
fc = st.number_input(
|
| 273 |
+
"Compressive Strength (ksc)",
|
| 274 |
+
min_value=10.0,
|
| 275 |
+
max_value=1000.0,
|
| 276 |
+
value=670.0,
|
| 277 |
+
step=10.0
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
with col2:
|
| 281 |
+
e_modulus = st.number_input(
|
| 282 |
+
"Elastic Modulus (ksc)",
|
| 283 |
+
min_value=10000.0,
|
| 284 |
+
max_value=1000000.0,
|
| 285 |
+
value=436000.0,
|
| 286 |
+
step=1000.0
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
# Predict button
|
| 292 |
+
if st.button("🚀 Predict Creep Strain"):
|
| 293 |
+
# Set default prediction days
|
| 294 |
+
max_days = 365
|
| 295 |
+
|
| 296 |
+
# Create features
|
| 297 |
+
features_dict = {
|
| 298 |
+
'Density': density,
|
| 299 |
+
'fc': fc,
|
| 300 |
+
'E': e_modulus
|
| 301 |
+
}
|
| 302 |
+
df_features = pd.DataFrame([features_dict])
|
| 303 |
+
|
| 304 |
+
# Run prediction
|
| 305 |
+
with st.spinner("🔄 Predicting..."):
|
| 306 |
+
try:
|
| 307 |
+
predictions, pred_time_values = predict_creep(
|
| 308 |
+
model, df_features, time_values,
|
| 309 |
+
feature_scaler, creep_scaler, device, max_days
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Results
|
| 313 |
+
st.markdown('<div class="result-card">', unsafe_allow_html=True)
|
| 314 |
+
|
| 315 |
+
# Key metrics
|
| 316 |
+
col1, col2 = st.columns(2)
|
| 317 |
+
with col1:
|
| 318 |
+
st.markdown(f"""
|
| 319 |
+
<div class="metric-card">
|
| 320 |
+
<h3>{predictions[-1]:.1f}</h3>
|
| 321 |
+
<p>Final Creep (µε)</p>
|
| 322 |
+
</div>
|
| 323 |
+
""", unsafe_allow_html=True)
|
| 324 |
+
|
| 325 |
+
with col2:
|
| 326 |
+
st.markdown(f"""
|
| 327 |
+
<div class="metric-card">
|
| 328 |
+
<h3>{np.max(predictions):.1f}</h3>
|
| 329 |
+
<p>Maximum Creep (µε)</p>
|
| 330 |
+
</div>
|
| 331 |
+
""", unsafe_allow_html=True)
|
| 332 |
+
|
| 333 |
+
# Simple plot
|
| 334 |
+
st.markdown("### 📊 Creep Strain Over Time")
|
| 335 |
+
|
| 336 |
+
# Set plot style to match Canva theme
|
| 337 |
+
plt.style.use('default')
|
| 338 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 339 |
+
fig.patch.set_facecolor('white')
|
| 340 |
+
|
| 341 |
+
ax.plot(pred_time_values, predictions,
|
| 342 |
+
color=CANVA_PURPLE, linewidth=3, alpha=0.8)
|
| 343 |
+
ax.fill_between(pred_time_values, predictions,
|
| 344 |
+
alpha=0.2, color=CANVA_LIGHT_PURPLE)
|
| 345 |
+
|
| 346 |
+
ax.set_xlabel('Time (days)', fontsize=12, color='#374151')
|
| 347 |
+
ax.set_ylabel('Creep Strain (µε)', fontsize=12, color='#374151')
|
| 348 |
+
ax.grid(True, alpha=0.3, color='#E5E7EB')
|
| 349 |
+
ax.set_facecolor('#FAFAFA')
|
| 350 |
+
|
| 351 |
+
# Remove top and right spines
|
| 352 |
+
ax.spines['top'].set_visible(False)
|
| 353 |
+
ax.spines['right'].set_visible(False)
|
| 354 |
+
ax.spines['left'].set_color('#E5E7EB')
|
| 355 |
+
ax.spines['bottom'].set_color('#E5E7EB')
|
| 356 |
+
|
| 357 |
+
plt.tight_layout()
|
| 358 |
+
st.pyplot(fig)
|
| 359 |
+
|
| 360 |
+
# Download data
|
| 361 |
+
results_df = pd.DataFrame({
|
| 362 |
+
'Time (days)': pred_time_values,
|
| 363 |
+
'Creep Strain (µε)': predictions
|
| 364 |
+
})
|
| 365 |
+
|
| 366 |
+
csv = results_df.to_csv(index=False)
|
| 367 |
+
st.download_button(
|
| 368 |
+
label="💾 Download Results",
|
| 369 |
+
data=csv,
|
| 370 |
+
file_name="creep_predictions.csv",
|
| 371 |
+
mime="text/csv"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
st.error(f"❌ Prediction failed: {e}")
|
| 378 |
+
|
| 379 |
+
# Simple footer
|
| 380 |
+
st.markdown("""
|
| 381 |
+
<div style='text-align: center; padding: 2rem 0; color: #9CA3AF;'>
|
| 382 |
+
<p>🏗️ Concrete Creep Prediction Tool</p>
|
| 383 |
+
<p style='margin-top: 0.5rem; font-size: 14px;'>Developed by <strong>CIFIR</strong> and <strong>AI Research Group KMUTT</strong></p>
|
| 384 |
+
</div>
|
| 385 |
+
""", unsafe_allow_html=True)
|