Spaces:
Running
Running
File size: 12,835 Bytes
08e5ef1 7edda8b 2bede7c 5fd1a0a 7edda8b 2bede7c 75b770e 08e5ef1 1fba392 925d15e 08e5ef1 2bede7c 69d19e7 925d15e 7686e09 2bede7c 65be081 4da3d6d 65be081 3d45f06 65be081 7c36326 d9267f6 5696fee 65be081 f4651d4 9781999 d9267f6 75b770e 2124573 f4651d4 2124573 d9267f6 3d45f06 f4651d4 9781999 5696fee 9781999 b7ccecf 9781999 3d45f06 9781999 65be081 4da3d6d 65be081 4da3d6d 65be081 3d45f06 65be081 9781999 3d45f06 9781999 65be081 5696fee 9781999 b7ccecf d9267f6 b7ccecf d9267f6 9781999 5696fee ef80b76 9781999 ef80b76 9781999 b7ccecf 9781999 3d45f06 9781999 b7ccecf 9781999 3d45f06 9781999 2124573 b7ccecf 3d45f06 b7ccecf 9781999 3d45f06 9781999 4da3d6d 65be081 9781999 3d45f06 5696fee 9781999 3d45f06 9781999 5696fee 9781999 5696fee 9781999 2bede7c ec000c3 d2fb1de ec000c3 3d45f06 65be081 3d45f06 65be081 3d45f06 65be081 3d45f06 65be081 925d15e b31944c 925d15e 65be081 ec000c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import os
import shutil
import subprocess
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
LLAMA_LIKE_ARCHS = ["MistralForCausalLM",]
HF_TOKEN = os.environ.get("HF_TOKEN")
def script_to_use(model_id, api):
info = api.model_info(model_id)
if info.config is None:
return None
arch = info.config.get("architectures", None)
if arch is None:
return None
arch = arch[0]
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
def generate_importance_matrix(model_path, train_data_path):
imatrix_command = f"./imatrix -m ../{model_path} -f {train_data_path} -ngl 0" #No GPU on the basic spaces unlike main, it works regardless but takes >2 hours
os.chdir("llama.cpp")
compile_command = "make"
compile_result = subprocess.run(compile_command, shell=True, capture_output=True, text=True)
if compile_result.returncode != 0:
raise Exception(f"Error compiling imatrix: {compile_result.stderr}")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in the current directory: {os.listdir('.')}")
if not os.path.isfile(f"../{model_path}"):
raise Exception(f"Model file not found: {model_path}")
result = subprocess.run(imatrix_command, shell=True, capture_output=True, text=True)
os.chdir("..")
if result.returncode != 0:
raise Exception(f"Error generating importance matrix: {result.stderr}")
print("Importance matrix generated successfully!")
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
if oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}"
if split_max_size:
split_cmd += f" --split-max-size {split_max_size}"
split_cmd += f" {model_path} {model_path.split('.')[0]}"
print(f"Split command: {split_cmd}")
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
print(f"Split command stdout: {result.stdout}")
print(f"Split command stderr: {result.stderr}")
if result.returncode != 0:
raise Exception(f"Error splitting the model: {result.stderr}")
print("Model split successfully!")
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
if sharded_model_files:
print(f"Sharded model files: {sharded_model_files}")
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join('.', file)
print(f"Uploading file: {file_path}")
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
print("Sharded model has been uploaded successfully!")
def process_model(model_id, q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use GGUF-my-repo")
model_name = model_id.split('/')[-1]
fp16 = f"llama.cpp/{model_name}.fp16.gguf"
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern += pattern
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Current working directory: {os.getcwd()}")
print(f"Model directory contents: {os.listdir(model_name)}")
conversion_script = script_to_use(model_id, api)
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {fp16}")
imatrix_path = "llama.cpp/imatrix.dat"
use_imatrix = q_method.startswith("IQ")
if train_data_file and use_imatrix:
train_data_path = train_data_file.name
print(f"Training data file path: {train_data_path}")
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path)
else:
print("No training data file provided or not using imatrix quantization.")
username = whoami(oauth_token.token)["name"]
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}-imat.gguf"
quantized_gguf_path = f"llama.cpp/{quantized_gguf_name}"
if use_imatrix:
quantise_ggml = f"./llama.cpp/quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {q_method}"
else:
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
print(f"Quantization command: {quantise_ggml}")
result = subprocess.run(quantise_ggml, shell=True, capture_output=True, text=True)
print(f"Quantization command stdout: {result.stdout}")
print(f"Quantization command stderr: {result.stderr}")
if result.returncode != 0:
raise Exception(f"Error quantizing: {result.stderr}")
print(f"Quantized successfully with {q_method} option!")
print(f"Quantized model path: {quantized_gguf_path}")
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-imat.gguf", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("gguf-my-repo")
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo {new_repo_id} --model {quantized_gguf_name} -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo {new_repo_id} --model {quantized_gguf_name} -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && \\
cd llama.cpp && \\
make && \\
./main -m {quantized_gguf_name} -n 128
```
"""
)
card.save(f"README.md")
if split_model:
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
else:
try:
print(f"Uploading quantized model: {quantized_gguf_path}")
api.upload_file(
path_or_fileobj=quantized_gguf_path,
path_in_repo=quantized_gguf_name,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
# Upload imatrix.dat if it exists
imatrix_path = "llama.cpp/imatrix.dat"
if os.path.isfile(imatrix_path):
try:
print(f"Uploading imatrix.dat: {imatrix_path}")
api.upload_file(
path_or_fileobj=imatrix_path,
path_in_repo="imatrix.dat",
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
api.upload_file(
path_or_fileobj=f"README.md",
path_in_repo=f"README.md",
repo_id=new_repo_id,
)
print(f"Uploaded successfully with {q_method} option!")
return (
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
print("Folder cleaned up successfully!")
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use GGUF-my-repo.")
gr.LoginButton(min_width=250)
model_id_input = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method_input = gr.Dropdown(
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False
)
private_repo_input = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
train_data_file_input = gr.File(
label="Training Data File",
file_types=["txt"]
)
split_model_input = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
split_max_tensors_input = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
split_max_size_input = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
visible=False
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id_input,
q_method_input,
private_repo_input,
train_data_file_input,
split_model_input,
split_max_tensors_input,
split_max_size_input,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
)
def update_visibility(split_model):
return gr.update(visible=split_model), gr.update(visible=split_model)
split_model_input.change(
fn=update_visibility,
inputs=split_model_input, outputs=[split_max_tensors_input, split_max_size_input]
)
def restart_space():
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
#Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True) |