Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -28,11 +28,51 @@ def script_to_use(model_id, api):
|
|
28 |
arch = arch[0]
|
29 |
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
|
30 |
|
31 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
if oauth_token.token is None:
|
33 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
34 |
model_name = model_id.split('/')[-1]
|
35 |
-
fp16 = f"{model_name}
|
36 |
|
37 |
try:
|
38 |
api = HfApi(token=oauth_token.token)
|
@@ -54,7 +94,9 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
54 |
dl_pattern += pattern
|
55 |
|
56 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
57 |
-
print("Model downloaded
|
|
|
|
|
58 |
|
59 |
conversion_script = script_to_use(model_id, api)
|
60 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
@@ -62,17 +104,21 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
62 |
print(result)
|
63 |
if result.returncode != 0:
|
64 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
65 |
-
print("Model converted to fp16
|
|
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
70 |
if result.returncode != 0:
|
71 |
raise Exception(f"Error quantizing: {result.stderr}")
|
72 |
-
print("
|
|
|
73 |
|
74 |
# Create empty repo
|
75 |
-
new_repo_url = api.create_repo(repo_id=f"{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
|
76 |
new_repo_id = new_repo_url.repo_id
|
77 |
print("Repo created successfully!", new_repo_url)
|
78 |
|
@@ -90,50 +136,49 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
90 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
91 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
92 |
## Use with llama.cpp
|
93 |
-
|
94 |
Install llama.cpp through brew.
|
95 |
-
|
96 |
```bash
|
97 |
brew install ggerganov/ggerganov/llama.cpp
|
98 |
```
|
99 |
Invoke the llama.cpp server or the CLI.
|
100 |
-
|
101 |
CLI:
|
102 |
-
|
103 |
```bash
|
104 |
-
llama-cli --hf-repo {new_repo_id} --model {
|
105 |
```
|
106 |
-
|
107 |
Server:
|
108 |
-
|
109 |
```bash
|
110 |
-
llama-server --hf-repo {new_repo_id} --model {
|
111 |
```
|
112 |
-
|
113 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
114 |
-
|
115 |
```
|
116 |
-
git clone https://github.com/ggerganov/llama.cpp &&
|
117 |
-
cd llama.cpp &&
|
118 |
-
make &&
|
119 |
-
./main -m {
|
120 |
```
|
121 |
"""
|
122 |
)
|
123 |
-
card.save(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
api.upload_file(
|
132 |
-
path_or_fileobj=f"
|
133 |
-
path_in_repo="README.md",
|
134 |
repo_id=new_repo_id,
|
135 |
)
|
136 |
-
print("Uploaded successfully!")
|
137 |
|
138 |
return (
|
139 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
@@ -147,38 +192,75 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
147 |
|
148 |
|
149 |
# Create Gradio interface
|
150 |
-
iface = gr.Interface(
|
151 |
-
fn=process_model,
|
152 |
-
inputs=[
|
153 |
-
HuggingfaceHubSearch(
|
154 |
-
label="Hub Model ID",
|
155 |
-
placeholder="Search for model id on Huggingface",
|
156 |
-
search_type="model",
|
157 |
-
),
|
158 |
-
gr.Dropdown(
|
159 |
-
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
160 |
-
label="Quantization Method",
|
161 |
-
info="GGML quantisation type",
|
162 |
-
value="Q4_K_M",
|
163 |
-
filterable=False
|
164 |
-
),
|
165 |
-
gr.Checkbox(
|
166 |
-
value=False,
|
167 |
-
label="Private Repo",
|
168 |
-
info="Create a private repo under your username."
|
169 |
-
),
|
170 |
-
],
|
171 |
-
outputs=[
|
172 |
-
gr.Markdown(label="output"),
|
173 |
-
gr.Image(show_label=False),
|
174 |
-
],
|
175 |
-
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
176 |
-
description="The space takes an HF repo as an input, quantises it and creates a Public repo containing the selected quant under your HF user namespace.",
|
177 |
-
)
|
178 |
with gr.Blocks() as demo:
|
179 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
180 |
gr.LoginButton(min_width=250)
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
def restart_space():
|
184 |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
|
|
28 |
arch = arch[0]
|
29 |
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
|
30 |
|
31 |
+
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
32 |
+
if oauth_token.token is None:
|
33 |
+
raise ValueError("You have to be logged in.")
|
34 |
+
|
35 |
+
split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}"
|
36 |
+
if split_max_size:
|
37 |
+
split_cmd += f" --split-max-size {split_max_size}"
|
38 |
+
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
39 |
+
|
40 |
+
print(f"Split command: {split_cmd}")
|
41 |
+
|
42 |
+
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
43 |
+
print(f"Split command stdout: {result.stdout}")
|
44 |
+
print(f"Split command stderr: {result.stderr}")
|
45 |
+
|
46 |
+
if result.returncode != 0:
|
47 |
+
raise Exception(f"Error splitting the model: {result.stderr}")
|
48 |
+
print("Model split successfully!")
|
49 |
+
|
50 |
+
|
51 |
+
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
52 |
+
if sharded_model_files:
|
53 |
+
print(f"Sharded model files: {sharded_model_files}")
|
54 |
+
api = HfApi(token=oauth_token.token)
|
55 |
+
for file in sharded_model_files:
|
56 |
+
file_path = os.path.join('.', file)
|
57 |
+
print(f"Uploading file: {file_path}")
|
58 |
+
try:
|
59 |
+
api.upload_file(
|
60 |
+
path_or_fileobj=file_path,
|
61 |
+
path_in_repo=file,
|
62 |
+
repo_id=repo_id,
|
63 |
+
)
|
64 |
+
except Exception as e:
|
65 |
+
raise Exception(f"Error uploading file {file_path}: {e}")
|
66 |
+
else:
|
67 |
+
raise Exception("No sharded files found.")
|
68 |
+
|
69 |
+
print("Sharded model has been uploaded successfully!")
|
70 |
+
|
71 |
+
def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
72 |
if oauth_token.token is None:
|
73 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
74 |
model_name = model_id.split('/')[-1]
|
75 |
+
fp16 = f"{model_name}.fp16.gguf"
|
76 |
|
77 |
try:
|
78 |
api = HfApi(token=oauth_token.token)
|
|
|
94 |
dl_pattern += pattern
|
95 |
|
96 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
97 |
+
print("Model downloaded successfully!")
|
98 |
+
print(f"Current working directory: {os.getcwd()}")
|
99 |
+
print(f"Model directory contents: {os.listdir(model_name)}")
|
100 |
|
101 |
conversion_script = script_to_use(model_id, api)
|
102 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
|
|
104 |
print(result)
|
105 |
if result.returncode != 0:
|
106 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
107 |
+
print("Model converted to fp16 successfully!")
|
108 |
+
print(f"Converted model path: {fp16}")
|
109 |
|
110 |
+
username = whoami(oauth_token.token)["name"]
|
111 |
+
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf"
|
112 |
+
quantized_gguf_path = quantized_gguf_name
|
113 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
114 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
115 |
if result.returncode != 0:
|
116 |
raise Exception(f"Error quantizing: {result.stderr}")
|
117 |
+
print(f"Quantized successfully with {q_method} option!")
|
118 |
+
print(f"Quantized model path: {quantized_gguf_path}")
|
119 |
|
120 |
# Create empty repo
|
121 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
|
122 |
new_repo_id = new_repo_url.repo_id
|
123 |
print("Repo created successfully!", new_repo_url)
|
124 |
|
|
|
136 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
137 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
138 |
## Use with llama.cpp
|
|
|
139 |
Install llama.cpp through brew.
|
|
|
140 |
```bash
|
141 |
brew install ggerganov/ggerganov/llama.cpp
|
142 |
```
|
143 |
Invoke the llama.cpp server or the CLI.
|
|
|
144 |
CLI:
|
|
|
145 |
```bash
|
146 |
+
llama-cli --hf-repo {new_repo_id} --model {quantized_gguf_name} -p "The meaning to life and the universe is"
|
147 |
```
|
|
|
148 |
Server:
|
|
|
149 |
```bash
|
150 |
+
llama-server --hf-repo {new_repo_id} --model {quantized_gguf_name} -c 2048
|
151 |
```
|
|
|
152 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
|
|
153 |
```
|
154 |
+
git clone https://github.com/ggerganov/llama.cpp && \\
|
155 |
+
cd llama.cpp && \\
|
156 |
+
make && \\
|
157 |
+
./main -m {quantized_gguf_name} -n 128
|
158 |
```
|
159 |
"""
|
160 |
)
|
161 |
+
card.save(f"README.md")
|
162 |
+
|
163 |
+
if split_model:
|
164 |
+
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
165 |
+
else:
|
166 |
+
try:
|
167 |
+
print(f"Uploading quantized model: {quantized_gguf_path}")
|
168 |
+
api.upload_file(
|
169 |
+
path_or_fileobj=quantized_gguf_path,
|
170 |
+
path_in_repo=quantized_gguf_name,
|
171 |
+
repo_id=new_repo_id,
|
172 |
+
)
|
173 |
+
except Exception as e:
|
174 |
+
raise Exception(f"Error uploading quantized model: {e}")
|
175 |
|
176 |
api.upload_file(
|
177 |
+
path_or_fileobj=f"README.md",
|
178 |
+
path_in_repo=f"README.md",
|
179 |
repo_id=new_repo_id,
|
180 |
)
|
181 |
+
print(f"Uploaded successfully with {q_method} option!")
|
182 |
|
183 |
return (
|
184 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
|
|
192 |
|
193 |
|
194 |
# Create Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
with gr.Blocks() as demo:
|
196 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
197 |
gr.LoginButton(min_width=250)
|
198 |
+
|
199 |
+
model_id_input = HuggingfaceHubSearch(
|
200 |
+
label="Hub Model ID",
|
201 |
+
placeholder="Search for model id on Huggingface",
|
202 |
+
search_type="model",
|
203 |
+
)
|
204 |
+
|
205 |
+
q_method_input = gr.Dropdown(
|
206 |
+
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
207 |
+
label="Quantization Method",
|
208 |
+
info="GGML quantization type",
|
209 |
+
value="Q4_K_M",
|
210 |
+
filterable=False
|
211 |
+
)
|
212 |
+
|
213 |
+
private_repo_input = gr.Checkbox(
|
214 |
+
value=False,
|
215 |
+
label="Private Repo",
|
216 |
+
info="Create a private repo under your username."
|
217 |
+
)
|
218 |
+
|
219 |
+
split_model_input = gr.Checkbox(
|
220 |
+
value=False,
|
221 |
+
label="Split Model",
|
222 |
+
info="Shard the model using gguf-split."
|
223 |
+
)
|
224 |
+
|
225 |
+
split_max_tensors_input = gr.Number(
|
226 |
+
value=256,
|
227 |
+
label="Max Tensors per File",
|
228 |
+
info="Maximum number of tensors per file when splitting model.",
|
229 |
+
visible=False
|
230 |
+
)
|
231 |
+
|
232 |
+
split_max_size_input = gr.Textbox(
|
233 |
+
label="Max File Size",
|
234 |
+
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
235 |
+
visible=False
|
236 |
+
)
|
237 |
+
|
238 |
+
iface = gr.Interface(
|
239 |
+
fn=process_model,
|
240 |
+
inputs=[
|
241 |
+
model_id_input,
|
242 |
+
q_method_input,
|
243 |
+
private_repo_input,
|
244 |
+
split_model_input,
|
245 |
+
split_max_tensors_input,
|
246 |
+
split_max_size_input,
|
247 |
+
],
|
248 |
+
outputs=[
|
249 |
+
gr.Markdown(label="output"),
|
250 |
+
gr.Image(show_label=False),
|
251 |
+
],
|
252 |
+
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
253 |
+
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
254 |
+
)
|
255 |
+
|
256 |
+
def update_visibility(split_model):
|
257 |
+
return gr.update(visible=split_model), gr.update(visible=split_model)
|
258 |
+
|
259 |
+
split_model_input.change(
|
260 |
+
fn=update_visibility,
|
261 |
+
inputs=split_model_input,
|
262 |
+
outputs=[split_max_tensors_input, split_max_size_input]
|
263 |
+
)
|
264 |
|
265 |
def restart_space():
|
266 |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|