Spaces:
Runtime error
Runtime error
File size: 13,374 Bytes
b6d5990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import numpy as np
from torch.utils import data
from collections import OrderedDict
from torch.nn.parameter import Parameter
class SincConv(nn.Module):
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10 ** (mel / 2595) - 1)
def __init__(self, device,out_channels, kernel_size,in_channels=1,sample_rate=16000,
stride=1, padding=0, dilation=1, bias=False, groups=1):
super(SincConv,self).__init__()
if in_channels != 1:
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.sample_rate=sample_rate
# Forcing the filters to be odd (i.e, perfectly symmetrics)
if kernel_size%2==0:
self.kernel_size=self.kernel_size+1
self.device=device
self.stride = stride
self.padding = padding
self.dilation = dilation
if bias:
raise ValueError('SincConv does not support bias.')
if groups > 1:
raise ValueError('SincConv does not support groups.')
# initialize filterbanks using Mel scale
NFFT = 512
f=int(self.sample_rate/2)*np.linspace(0,1,int(NFFT/2)+1)
fmel=self.to_mel(f) # Hz to mel conversion
fmelmax=np.max(fmel)
fmelmin=np.min(fmel)
filbandwidthsmel=np.linspace(fmelmin,fmelmax,self.out_channels+1)
filbandwidthsf=self.to_hz(filbandwidthsmel) # Mel to Hz conversion
self.mel=filbandwidthsf
self.hsupp=torch.arange(-(self.kernel_size-1)/2, (self.kernel_size-1)/2+1)
self.band_pass=torch.zeros(self.out_channels,self.kernel_size)
def forward(self,x):
for i in range(len(self.mel)-1):
fmin=self.mel[i]
fmax=self.mel[i+1]
hHigh=(2*fmax/self.sample_rate)*np.sinc(2*fmax*self.hsupp/self.sample_rate)
hLow=(2*fmin/self.sample_rate)*np.sinc(2*fmin*self.hsupp/self.sample_rate)
hideal=hHigh-hLow
self.band_pass[i,:]=Tensor(np.hamming(self.kernel_size))*Tensor(hideal)
band_pass_filter=self.band_pass.to(self.device)
self.filters = (band_pass_filter).view(self.out_channels, 1, self.kernel_size)
return F.conv1d(x, self.filters, stride=self.stride,
padding=self.padding, dilation=self.dilation,
bias=None, groups=1)
class Residual_block(nn.Module):
def __init__(self, nb_filts, first = False):
super(Residual_block, self).__init__()
self.first = first
if not self.first:
self.bn1 = nn.BatchNorm1d(num_features = nb_filts[0])
self.lrelu = nn.LeakyReLU(negative_slope=0.3)
self.conv1 = nn.Conv1d(in_channels = nb_filts[0],
out_channels = nb_filts[1],
kernel_size = 3,
padding = 1,
stride = 1)
self.bn2 = nn.BatchNorm1d(num_features = nb_filts[1])
self.conv2 = nn.Conv1d(in_channels = nb_filts[1],
out_channels = nb_filts[1],
padding = 1,
kernel_size = 3,
stride = 1)
if nb_filts[0] != nb_filts[1]:
self.downsample = True
self.conv_downsample = nn.Conv1d(in_channels = nb_filts[0],
out_channels = nb_filts[1],
padding = 0,
kernel_size = 1,
stride = 1)
else:
self.downsample = False
self.mp = nn.MaxPool1d(3)
def forward(self, x):
identity = x
if not self.first:
out = self.bn1(x)
out = self.lrelu(out)
else:
out = x
out = self.conv1(x)
out = self.bn2(out)
out = self.lrelu(out)
out = self.conv2(out)
if self.downsample:
identity = self.conv_downsample(identity)
out += identity
out = self.mp(out)
return out
class RawNet(nn.Module):
def __init__(self, d_args, device):
super(RawNet, self).__init__()
self.device=device
self.Sinc_conv=SincConv(device=self.device,
out_channels = d_args['filts'][0],
kernel_size = d_args['first_conv'],
in_channels = d_args['in_channels']
)
self.first_bn = nn.BatchNorm1d(num_features = d_args['filts'][0])
self.selu = nn.SELU(inplace=True)
self.block0 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1], first = True))
self.block1 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1]))
self.block2 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
d_args['filts'][2][0] = d_args['filts'][2][1]
self.block3 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
self.block4 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
self.block5 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc_attention0 = self._make_attention_fc(in_features = d_args['filts'][1][-1],
l_out_features = d_args['filts'][1][-1])
self.fc_attention1 = self._make_attention_fc(in_features = d_args['filts'][1][-1],
l_out_features = d_args['filts'][1][-1])
self.fc_attention2 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.fc_attention3 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.fc_attention4 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.fc_attention5 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.bn_before_gru = nn.BatchNorm1d(num_features = d_args['filts'][2][-1])
self.gru = nn.GRU(input_size = d_args['filts'][2][-1],
hidden_size = d_args['gru_node'],
num_layers = d_args['nb_gru_layer'],
batch_first = True)
self.fc1_gru = nn.Linear(in_features = d_args['gru_node'],
out_features = d_args['nb_fc_node'])
self.fc2_gru = nn.Linear(in_features = d_args['nb_fc_node'],
out_features = d_args['nb_classes'],bias=True)
self.sig = nn.Sigmoid()
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, x, y = None):
nb_samp = x.shape[0]
len_seq = x.shape[1]
x=x.view(nb_samp,1,len_seq)
x = self.Sinc_conv(x)
x = F.max_pool1d(torch.abs(x), 3)
x = self.first_bn(x)
x = self.selu(x)
x0 = self.block0(x)
y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter])
y0 = self.fc_attention0(y0)
y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1) # torch.Size([batch, filter, 1])
x = x0 * y0 + y0 # (batch, filter, time) x (batch, filter, 1)
x1 = self.block1(x)
y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter])
y1 = self.fc_attention1(y1)
y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1) # torch.Size([batch, filter, 1])
x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1)
x2 = self.block2(x)
y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter])
y2 = self.fc_attention2(y2)
y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1) # torch.Size([batch, filter, 1])
x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1)
x3 = self.block3(x)
y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter])
y3 = self.fc_attention3(y3)
y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1) # torch.Size([batch, filter, 1])
x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1)
x4 = self.block4(x)
y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter])
y4 = self.fc_attention4(y4)
y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1) # torch.Size([batch, filter, 1])
x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1)
x5 = self.block5(x)
y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter])
y5 = self.fc_attention5(y5)
y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1) # torch.Size([batch, filter, 1])
x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1)
x = self.bn_before_gru(x)
x = self.selu(x)
x = x.permute(0, 2, 1) #(batch, filt, time) >> (batch, time, filt)
self.gru.flatten_parameters()
x, _ = self.gru(x)
x = x[:,-1,:]
x = self.fc1_gru(x)
x = self.fc2_gru(x)
output=self.logsoftmax(x)
print(f"Spec output shape: {output.shape}")
return output
def _make_attention_fc(self, in_features, l_out_features):
l_fc = []
l_fc.append(nn.Linear(in_features = in_features,
out_features = l_out_features))
return nn.Sequential(*l_fc)
def _make_layer(self, nb_blocks, nb_filts, first = False):
layers = []
#def __init__(self, nb_filts, first = False):
for i in range(nb_blocks):
first = first if i == 0 else False
layers.append(Residual_block(nb_filts = nb_filts,
first = first))
if i == 0: nb_filts[0] = nb_filts[1]
return nn.Sequential(*layers)
def summary(self, input_size, batch_size=-1, device="cuda", print_fn = None):
if print_fn == None: printfn = print
model = self
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_idx = len(summary)
m_key = "%s-%i" % (class_name, module_idx + 1)
summary[m_key] = OrderedDict()
summary[m_key]["input_shape"] = list(input[0].size())
summary[m_key]["input_shape"][0] = batch_size
if isinstance(output, (list, tuple)):
summary[m_key]["output_shape"] = [
[-1] + list(o.size())[1:] for o in output
]
else:
summary[m_key]["output_shape"] = list(output.size())
if len(summary[m_key]["output_shape"]) != 0:
summary[m_key]["output_shape"][0] = batch_size
params = 0
if hasattr(module, "weight") and hasattr(module.weight, "size"):
params += torch.prod(torch.LongTensor(list(module.weight.size())))
summary[m_key]["trainable"] = module.weight.requires_grad
if hasattr(module, "bias") and hasattr(module.bias, "size"):
params += torch.prod(torch.LongTensor(list(module.bias.size())))
summary[m_key]["nb_params"] = params
if (
not isinstance(module, nn.Sequential)
and not isinstance(module, nn.ModuleList)
and not (module == model)
):
hooks.append(module.register_forward_hook(hook))
device = device.lower()
assert device in [
"cuda",
"cpu",
], "Input device is not valid, please specify 'cuda' or 'cpu'"
if device == "cuda" and torch.cuda.is_available():
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
if isinstance(input_size, tuple):
input_size = [input_size]
x = [torch.rand(2, *in_size).type(dtype) for in_size in input_size]
summary = OrderedDict()
hooks = []
model.apply(register_hook)
model(*x)
for h in hooks:
h.remove()
print_fn("----------------------------------------------------------------")
line_new = "{:>20} {:>25} {:>15}".format("Layer (type)", "Output Shape", "Param #")
print_fn(line_new)
print_fn("================================================================")
total_params = 0
total_output = 0
trainable_params = 0
for layer in summary:
# input_shape, output_shape, trainable, nb_params
line_new = "{:>20} {:>25} {:>15}".format(
layer,
str(summary[layer]["output_shape"]),
"{0:,}".format(summary[layer]["nb_params"]),
)
total_params += summary[layer]["nb_params"]
total_output += np.prod(summary[layer]["output_shape"])
if "trainable" in summary[layer]:
if summary[layer]["trainable"] == True:
trainable_params += summary[layer]["nb_params"]
print_fn(line_new)
|