Spaces:
Runtime error
Runtime error
SivaResearch
commited on
Commit
•
b6d5990
1
Parent(s):
a983048
demo
Browse files- .gitattributes +2 -0
- .gitignore +1 -0
- Multimodal_deepfake_training_notebook.ipynb +248 -0
- __pycache__/inference.cpython-39.pyc +0 -0
- __pycache__/inference_2.cpython-39.pyc +0 -0
- app.py +35 -0
- audios/DF_E_2000027.flac +0 -0
- audios/DF_E_2000028.flac +0 -0
- audios/DF_E_2000031.flac +0 -0
- audios/DF_E_2000032.flac +0 -0
- checkpoints/efficientnet.onnx +3 -0
- checkpoints/model.pth +3 -0
- data/__init__.py +22 -0
- data/__pycache__/__init__.cpython-39.pyc +0 -0
- data/__pycache__/augmentation_utils.cpython-39.pyc +0 -0
- data/__pycache__/dfdt_dataset.cpython-39.pyc +0 -0
- data/augmentation_utils.py +88 -0
- data/dfdt_dataset.py +130 -0
- data/generate_dataset_to_tfrecord.py +178 -0
- datasets/fakeavceleb_100.csv +101 -0
- datasets/fakeavceleb_1k.csv +1001 -0
- datasets/train/.gitkeep +0 -0
- datasets/val/.gitkeep +0 -0
- images/fake_image.jpg +0 -0
- images/lady.jpg +0 -0
- inference.py +211 -0
- inference_2.py +216 -0
- main.py +247 -0
- models/TMC.py +156 -0
- models/__pycache__/TMC.cpython-39.pyc +0 -0
- models/__pycache__/classifiers.cpython-39.pyc +0 -0
- models/__pycache__/image.cpython-39.pyc +0 -0
- models/__pycache__/rawnet.cpython-39.pyc +0 -0
- models/classifiers.py +172 -0
- models/image.py +195 -0
- models/rawnet.py +360 -0
- requirements.txt +12 -0
- save_ckpts.py +89 -0
- utils/__pycache__/logger.cpython-39.pyc +0 -0
- utils/__pycache__/utils.cpython-39.pyc +0 -0
- utils/logger.py +58 -0
- utils/utils.py +55 -0
- videos/celeb_synthesis.mp4 +0 -0
- videos/real-1.mp4 +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoints/model.pth filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoints/efficientnet.onnx filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoints/RawNet2.pth
|
Multimodal_deepfake_training_notebook.ipynb
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"colab_type": "text",
|
7 |
+
"id": "view-in-github"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/AlvinKimata/ml-projects/blob/main/DFDT%20TMC/Multimodal_deepfake_training_notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 1,
|
16 |
+
"metadata": {
|
17 |
+
"colab": {
|
18 |
+
"base_uri": "https://localhost:8080/"
|
19 |
+
},
|
20 |
+
"id": "FK1MZWm7oFa6",
|
21 |
+
"outputId": "ec19e080-086b-4cd6-997f-14dce5c61540"
|
22 |
+
},
|
23 |
+
"outputs": [
|
24 |
+
{
|
25 |
+
"name": "stdout",
|
26 |
+
"output_type": "stream",
|
27 |
+
"text": [
|
28 |
+
"Cloning into 'ml-projects'...\n",
|
29 |
+
"remote: Enumerating objects: 3730, done.\u001b[K\n",
|
30 |
+
"remote: Counting objects: 100% (719/719), done.\u001b[K\n",
|
31 |
+
"remote: Compressing objects: 100% (392/392), done.\u001b[K\n",
|
32 |
+
"remote: Total 3730 (delta 305), reused 710 (delta 298), pack-reused 3011\u001b[K\n",
|
33 |
+
"Receiving objects: 100% (3730/3730), 218.98 MiB | 9.61 MiB/s, done.\n",
|
34 |
+
"Resolving deltas: 100% (307/307), done.\n"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"!git clone 'https://github.com/AlvinKimata/ml-projects.git'"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 2,
|
45 |
+
"metadata": {
|
46 |
+
"colab": {
|
47 |
+
"base_uri": "https://localhost:8080/"
|
48 |
+
},
|
49 |
+
"id": "IUb5rFqssg2j",
|
50 |
+
"outputId": "665d0e33-6d70-4873-d8ad-614dffdcf843"
|
51 |
+
},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"name": "stdout",
|
55 |
+
"output_type": "stream",
|
56 |
+
"text": [
|
57 |
+
"{\"username\":\"kaggle_username\",\"key\":\"kaggle_api_key\"}\n"
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"!mkdir ../root/.kaggle/\n",
|
63 |
+
"!echo '{\"username\":\"kaggle_username\",\"key\":\"kaggle_api_key\"}' >> /root/.kaggle/kaggle.json\n",
|
64 |
+
"!chmod 400 ../root/.kaggle/kaggle.json #Read-only\n",
|
65 |
+
"!cat ../root/.kaggle/kaggle.json"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 4,
|
71 |
+
"metadata": {
|
72 |
+
"colab": {
|
73 |
+
"base_uri": "https://localhost:8080/"
|
74 |
+
},
|
75 |
+
"id": "owPZaNL8qAW8",
|
76 |
+
"outputId": "60e95755-df58-4906-e7ca-c9bb950c95cb"
|
77 |
+
},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"name": "stdout",
|
81 |
+
"output_type": "stream",
|
82 |
+
"text": [
|
83 |
+
"Downloading fakeavceleb-tfrecord.zip to /content\n",
|
84 |
+
" 98% 1.52G/1.55G [00:20<00:00, 116MB/s]\n",
|
85 |
+
"100% 1.55G/1.55G [00:21<00:00, 79.2MB/s]\n"
|
86 |
+
]
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"source": [
|
90 |
+
"!kaggle datasets download -d kimatadebonair/fakeavceleb-tfrecord"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": 5,
|
96 |
+
"metadata": {
|
97 |
+
"id": "SG3kuPIJstaN"
|
98 |
+
},
|
99 |
+
"outputs": [],
|
100 |
+
"source": [
|
101 |
+
"!unzip -q '/content/fakeavceleb-tfrecord.zip' -d inputs/"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": null,
|
107 |
+
"metadata": {
|
108 |
+
"id": "CyAvPAhKgi9K"
|
109 |
+
},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"!pip install -r 'DFDT TMC/requirements.txt'"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 6,
|
118 |
+
"metadata": {
|
119 |
+
"id": "sbBCy3Nps3V-"
|
120 |
+
},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"!cp -r '/content/ml-projects/DFDT TMC' ./"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 8,
|
129 |
+
"metadata": {
|
130 |
+
"colab": {
|
131 |
+
"base_uri": "https://localhost:8080/"
|
132 |
+
},
|
133 |
+
"id": "LYmBafKPuGOM",
|
134 |
+
"outputId": "cebc40c2-40c2-4425-f4e8-55e7656df4d3"
|
135 |
+
},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"name": "stdout",
|
139 |
+
"output_type": "stream",
|
140 |
+
"text": [
|
141 |
+
"cp: cannot stat '/content/inputs/fakeavceleb_1k-000010-of-00015': No such file or directory\n",
|
142 |
+
"cp: cannot stat '/content/inputs/fakeavceleb_1k-000011-of-00015': No such file or directory\n",
|
143 |
+
"cp: cannot stat '/content/inputs/fakeavceleb_1k-000012-of-00015': No such file or directory\n",
|
144 |
+
"cp: cannot stat '/content/inputs/fakeavceleb_1k-000013-of-00015': No such file or directory\n"
|
145 |
+
]
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"for i in range(14):\n",
|
150 |
+
" !cp '/content/inputs/fakeavceleb_1k-0000{i}-of-00015' '/content/DFDT TMC/datasets/train'"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 11,
|
156 |
+
"metadata": {
|
157 |
+
"id": "O1mT677Uc0qu"
|
158 |
+
},
|
159 |
+
"outputs": [],
|
160 |
+
"source": [
|
161 |
+
"for i in range(10, 15):\n",
|
162 |
+
" !cp '/content/inputs/fakeavceleb_1k-000{i}-of-00015' '/content/DFDT TMC/datasets/train'"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": 32,
|
168 |
+
"metadata": {
|
169 |
+
"colab": {
|
170 |
+
"base_uri": "https://localhost:8080/"
|
171 |
+
},
|
172 |
+
"id": "_-TCpjHVqT36",
|
173 |
+
"outputId": "88873108-392c-4830-f4e4-76b3a2cc8b3c"
|
174 |
+
},
|
175 |
+
"outputs": [
|
176 |
+
{
|
177 |
+
"name": "stdout",
|
178 |
+
"output_type": "stream",
|
179 |
+
"text": [
|
180 |
+
"--2023-07-14 09:10:01-- https://github.com/selimsef/dfdc_deepfake_challenge/releases/download/0.0.1/final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23\n",
|
181 |
+
"Resolving github.com (github.com)... 192.30.255.112\n",
|
182 |
+
"Connecting to github.com (github.com)|192.30.255.112|:443... connected.\n",
|
183 |
+
"HTTP request sent, awaiting response... 302 Found\n",
|
184 |
+
"Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/270020698/6e91bf80-a835-11ea-8950-51c980e899ce?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230714%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230714T091002Z&X-Amz-Expires=300&X-Amz-Signature=8623af355287f61ac5b0e7857ae8c21efdbeb265ccc3662b57cee5f04f31f572&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=270020698&response-content-disposition=attachment%3B%20filename%3Dfinal_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23&response-content-type=application%2Foctet-stream [following]\n",
|
185 |
+
"--2023-07-14 09:10:02-- https://objects.githubusercontent.com/github-production-release-asset-2e65be/270020698/6e91bf80-a835-11ea-8950-51c980e899ce?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230714%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230714T091002Z&X-Amz-Expires=300&X-Amz-Signature=8623af355287f61ac5b0e7857ae8c21efdbeb265ccc3662b57cee5f04f31f572&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=270020698&response-content-disposition=attachment%3B%20filename%3Dfinal_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23&response-content-type=application%2Foctet-stream\n",
|
186 |
+
"Resolving objects.githubusercontent.com (objects.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.110.133, ...\n",
|
187 |
+
"Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.111.133|:443... connected.\n",
|
188 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
189 |
+
"Length: 266910615 (255M) [application/octet-stream]\n",
|
190 |
+
"Saving to: ‘final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23’\n",
|
191 |
+
"\n",
|
192 |
+
"final_999_DeepFakeC 100%[===================>] 254.54M 66.8MB/s in 3.8s \n",
|
193 |
+
"\n",
|
194 |
+
"2023-07-14 09:10:06 (66.4 MB/s) - ‘final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23’ saved [266910615/266910615]\n",
|
195 |
+
"\n"
|
196 |
+
]
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"source": [
|
200 |
+
"!cd '/content/DFDT TMC/pretrained' && wget 'https://github.com/selimsef/dfdc_deepfake_challenge/releases/download/0.0.1/final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23'''"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": null,
|
206 |
+
"metadata": {
|
207 |
+
"colab": {
|
208 |
+
"base_uri": "https://localhost:8080/"
|
209 |
+
},
|
210 |
+
"id": "DvA-myf8s9-9",
|
211 |
+
"outputId": "477f4488-e1fb-44bb-b867-71c325c85dcb"
|
212 |
+
},
|
213 |
+
"outputs": [],
|
214 |
+
"source": [
|
215 |
+
"!python '/content/DFDT TMC/train_dfdc_tf.py' --device='cuda' \\\n",
|
216 |
+
" --data_dir=\"/content/DFDT TMC/datasets/train/fakeavceleb_1k*\" \\\n",
|
217 |
+
" --pretrained_image_encoder=True --pretrained_audio_encoder=True"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": null,
|
223 |
+
"metadata": {
|
224 |
+
"id": "kGfym7pEn4aP"
|
225 |
+
},
|
226 |
+
"outputs": [],
|
227 |
+
"source": []
|
228 |
+
}
|
229 |
+
],
|
230 |
+
"metadata": {
|
231 |
+
"accelerator": "GPU",
|
232 |
+
"colab": {
|
233 |
+
"authorship_tag": "ABX9TyNzEVTklkrYn6Mgz+yxoZaI",
|
234 |
+
"gpuType": "T4",
|
235 |
+
"include_colab_link": true,
|
236 |
+
"provenance": []
|
237 |
+
},
|
238 |
+
"kernelspec": {
|
239 |
+
"display_name": "Python 3",
|
240 |
+
"name": "python3"
|
241 |
+
},
|
242 |
+
"language_info": {
|
243 |
+
"name": "python"
|
244 |
+
}
|
245 |
+
},
|
246 |
+
"nbformat": 4,
|
247 |
+
"nbformat_minor": 0
|
248 |
+
}
|
__pycache__/inference.cpython-39.pyc
ADDED
Binary file (5.97 kB). View file
|
|
__pycache__/inference_2.cpython-39.pyc
ADDED
Binary file (5.97 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import inference_2 as inference
|
3 |
+
|
4 |
+
|
5 |
+
title="Multimodal deepfake detector"
|
6 |
+
description="Deepfake detection for videos, images and audio modalities."
|
7 |
+
|
8 |
+
|
9 |
+
video_interface = gr.Interface(inference.deepfakes_video_predict,
|
10 |
+
gr.Video(),
|
11 |
+
"text",
|
12 |
+
examples = ["videos/celeb_synthesis.mp4", "videos/real-1.mp4"],
|
13 |
+
cache_examples = False
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
image_interface = gr.Interface(inference.deepfakes_image_predict,
|
18 |
+
gr.Image(),
|
19 |
+
"text",
|
20 |
+
examples = ["images/lady.jpg", "images/fake_image.jpg"],
|
21 |
+
cache_examples=False
|
22 |
+
)
|
23 |
+
|
24 |
+
audio_interface = gr.Interface(inference.deepfakes_spec_predict,
|
25 |
+
gr.Audio(),
|
26 |
+
"text",
|
27 |
+
examples = ["audios/DF_E_2000027.flac", "audios/DF_E_2000031.flac"],
|
28 |
+
cache_examples = False)
|
29 |
+
|
30 |
+
|
31 |
+
app = gr.TabbedInterface(interface_list= [image_interface, video_interface, audio_interface],
|
32 |
+
tab_names = ['Image inference', 'Video inference', 'Audio inference'])
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
app.launch(share = False)
|
audios/DF_E_2000027.flac
ADDED
Binary file (30.3 kB). View file
|
|
audios/DF_E_2000028.flac
ADDED
Binary file (29.7 kB). View file
|
|
audios/DF_E_2000031.flac
ADDED
Binary file (65.2 kB). View file
|
|
audios/DF_E_2000032.flac
ADDED
Binary file (80.3 kB). View file
|
|
checkpoints/efficientnet.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:206f99f4c4efe6d088ba6e53bfcdec76ffa796a345d50770c037005e3cd11639
|
3 |
+
size 23510323
|
checkpoints/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3de812710093068acee6200b8d162aab074975edffa3edf2ccbe562868e4adf6
|
3 |
+
size 117418889
|
data/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.utils.data
|
2 |
+
|
3 |
+
class DataProvider():
|
4 |
+
|
5 |
+
def __init__(self, cfg, dataset, batch_size=None, shuffle=True):
|
6 |
+
super().__init__()
|
7 |
+
self.dataset = dataset
|
8 |
+
if batch_size is None:
|
9 |
+
batch_size = cfg.BATCH_SIZE
|
10 |
+
self.dataloader = torch.utils.data.DataLoader(
|
11 |
+
self.dataset,
|
12 |
+
batch_size=batch_size,
|
13 |
+
shuffle=shuffle,
|
14 |
+
num_workers=int(cfg.WORKERS),
|
15 |
+
drop_last=False)
|
16 |
+
|
17 |
+
def __len__(self):
|
18 |
+
return len(self.dataset)
|
19 |
+
|
20 |
+
def __iter__(self):
|
21 |
+
for i, data in enumerate(self.dataloader):
|
22 |
+
yield data
|
data/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (1.05 kB). View file
|
|
data/__pycache__/augmentation_utils.cpython-39.pyc
ADDED
Binary file (3.55 kB). View file
|
|
data/__pycache__/dfdt_dataset.cpython-39.pyc
ADDED
Binary file (4.56 kB). View file
|
|
data/augmentation_utils.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import albumentations
|
5 |
+
from albumentations import (Compose, ImageCompression, GaussNoise, HorizontalFlip,
|
6 |
+
PadIfNeeded, OneOf,ToGray, ShiftScaleRotate, GaussianBlur,
|
7 |
+
RandomBrightnessContrast, FancyPCA, HueSaturationValue, BasicTransform)
|
8 |
+
|
9 |
+
|
10 |
+
class AudioTransform(BasicTransform):
|
11 |
+
""" Transform for audio task. This is the main class where we override the targets and update params function for our need"""
|
12 |
+
@property
|
13 |
+
def targets(self):
|
14 |
+
return {"data": self.apply}
|
15 |
+
|
16 |
+
def update_params(self, params, **kwargs):
|
17 |
+
if hasattr(self, "interpolation"):
|
18 |
+
params["interpolation"] = self.interpolation
|
19 |
+
if hasattr(self, "fill_value"):
|
20 |
+
params["fill_value"] = self.fill_value
|
21 |
+
return params
|
22 |
+
|
23 |
+
class TimeShifting(AudioTransform):
|
24 |
+
""" Do time shifting of audio """
|
25 |
+
def __init__(self, always_apply=False, p=0.5):
|
26 |
+
super(TimeShifting, self).__init__(always_apply, p)
|
27 |
+
|
28 |
+
def apply(self,data,**params):
|
29 |
+
'''
|
30 |
+
data : ndarray of audio timeseries
|
31 |
+
'''
|
32 |
+
start_ = int(np.random.uniform(-80000,80000))
|
33 |
+
if start_ >= 0:
|
34 |
+
audio_time_shift = np.r_[data[start_:], np.random.uniform(-0.001,0.001, start_)]
|
35 |
+
else:
|
36 |
+
audio_time_shift = np.r_[np.random.uniform(-0.001,0.001, -start_), data[:start_]]
|
37 |
+
|
38 |
+
return audio_time_shift
|
39 |
+
|
40 |
+
class PitchShift(AudioTransform):
|
41 |
+
""" Do time shifting of audio """
|
42 |
+
def __init__(self, always_apply=False, p=0.5 , n_steps=None):
|
43 |
+
super(PitchShift, self).__init__(always_apply, p)
|
44 |
+
'''
|
45 |
+
nsteps here is equal to number of semitones
|
46 |
+
'''
|
47 |
+
|
48 |
+
self.n_steps = n_steps
|
49 |
+
|
50 |
+
def apply(self,data,**params):
|
51 |
+
'''
|
52 |
+
data : ndarray of audio timeseries
|
53 |
+
'''
|
54 |
+
return librosa.effects.pitch_shift(data,sr=16000,n_steps=self.n_steps)
|
55 |
+
|
56 |
+
|
57 |
+
class AddGaussianNoise(AudioTransform):
|
58 |
+
""" Do time shifting of audio """
|
59 |
+
def __init__(self, always_apply=False, p=0.5):
|
60 |
+
super(AddGaussianNoise, self).__init__(always_apply, p)
|
61 |
+
|
62 |
+
|
63 |
+
def apply(self,data,**params):
|
64 |
+
'''
|
65 |
+
data : ndarray of audio timeseries
|
66 |
+
'''
|
67 |
+
noise = np.random.randn(len(data))
|
68 |
+
data_wn = data + 0.005*noise
|
69 |
+
return data_wn
|
70 |
+
|
71 |
+
|
72 |
+
create_frame_transforms = Compose([
|
73 |
+
ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
|
74 |
+
GaussNoise(p=0.1),
|
75 |
+
GaussianBlur(blur_limit=3, p=0.05),
|
76 |
+
HorizontalFlip(),
|
77 |
+
PadIfNeeded(min_height=256, min_width=256, border_mode=cv2.BORDER_CONSTANT),
|
78 |
+
OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7),
|
79 |
+
ToGray(p=0.2),
|
80 |
+
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5),])
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
create_spec_transforms = albumentations.Compose([
|
85 |
+
TimeShifting(p=0.9), # here not p=1.0 because your nets should get some difficulties
|
86 |
+
AddGaussianNoise(p=0.8),
|
87 |
+
PitchShift(p=0.5,n_steps=4)
|
88 |
+
])
|
data/dfdt_dataset.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''Module for loading the fakeavceleb dataset from tfrecord format'''
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from data.augmentation_utils import create_frame_transforms, create_spec_transforms
|
5 |
+
|
6 |
+
FEATURE_DESCRIPTION = {
|
7 |
+
'video_path': tf.io.FixedLenFeature([], tf.string),
|
8 |
+
'image/encoded': tf.io.FixedLenFeature([], tf.string),
|
9 |
+
'clip/label/index': tf.io.FixedLenFeature([], tf.int64),
|
10 |
+
'clip/label/text': tf.io.FixedLenFeature([], tf.string),
|
11 |
+
'WAVEFORM/feature/floats': tf.io.FixedLenFeature([], tf.string)
|
12 |
+
}
|
13 |
+
|
14 |
+
@tf.function
|
15 |
+
def _parse_function(example_proto):
|
16 |
+
|
17 |
+
#Parse the input `tf.train.Example` proto using the dictionary above.
|
18 |
+
example = tf.io.parse_single_example(example_proto, FEATURE_DESCRIPTION)
|
19 |
+
|
20 |
+
video_path = example['video_path']
|
21 |
+
video = tf.io.decode_raw(example['image/encoded'], tf.int8)
|
22 |
+
spectrogram = tf.io.decode_raw(example['WAVEFORM/feature/floats'], tf.float32)
|
23 |
+
|
24 |
+
label = example["clip/label/text"]
|
25 |
+
label_map = example["clip/label/index"]
|
26 |
+
|
27 |
+
return video, spectrogram, label_map
|
28 |
+
|
29 |
+
@tf.function
|
30 |
+
def decode_inputs(video, spectrogram, label_map):
|
31 |
+
'''Decode tensors to arrays with desired shape'''
|
32 |
+
frame = tf.reshape(video, [10, 3, 256, 256])
|
33 |
+
frame = frame[0] / 255 #Pick the first frame and normalize it.
|
34 |
+
# frame = tf.cast(frame, tf.float32)
|
35 |
+
|
36 |
+
label_map = tf.expand_dims(label_map, axis = 0)
|
37 |
+
|
38 |
+
sample = {'video_reshaped': frame, 'spectrogram': spectrogram, 'label_map': label_map}
|
39 |
+
return sample
|
40 |
+
|
41 |
+
|
42 |
+
def decode_train_inputs(video, spectrogram, label_map):
|
43 |
+
#Data augmentation for spectograms
|
44 |
+
spectrogram_shape = spectrogram.shape
|
45 |
+
spec_augmented = tf.py_function(aug_spec_fn, [spectrogram], tf.float32)
|
46 |
+
spec_augmented.set_shape(spectrogram_shape)
|
47 |
+
|
48 |
+
frame = tf.reshape(video, [10, 256, 256, 3])
|
49 |
+
frame = frame[0] #Pick the first frame.
|
50 |
+
frame = frame / 255 #Normalize tensor.
|
51 |
+
|
52 |
+
frame_augmented = tf.py_function(aug_img_fn, [frame], tf.uint8)
|
53 |
+
# frame_augmented.set_shape(frame_shape)
|
54 |
+
|
55 |
+
frame_augmented.set_shape([3, 256, 256])
|
56 |
+
label_map = tf.expand_dims(label_map, axis = 0)
|
57 |
+
|
58 |
+
augmented_sample = {'video_reshaped': frame_augmented, 'spectrogram': spec_augmented, 'label_map': label_map}
|
59 |
+
return augmented_sample
|
60 |
+
|
61 |
+
|
62 |
+
def aug_img_fn(frame):
|
63 |
+
frame = frame.numpy().astype(np.uint8)
|
64 |
+
frame_data = {'image': frame}
|
65 |
+
aug_frame_data = create_frame_transforms(**frame_data)
|
66 |
+
aug_img = aug_frame_data['image']
|
67 |
+
aug_img = aug_img.transpose(2, 0, 1)
|
68 |
+
return aug_img
|
69 |
+
|
70 |
+
def aug_spec_fn(spec):
|
71 |
+
spec = spec.numpy()
|
72 |
+
spec_data = {'spec': spec}
|
73 |
+
aug_spec_data = create_spec_transforms(**spec_data)
|
74 |
+
aug_spec = aug_spec_data['spec']
|
75 |
+
return aug_spec
|
76 |
+
|
77 |
+
|
78 |
+
class FakeAVCelebDatasetTrain:
|
79 |
+
|
80 |
+
def __init__(self, args):
|
81 |
+
self.args = args
|
82 |
+
self.samples = self.load_features_from_tfrec()
|
83 |
+
|
84 |
+
def load_features_from_tfrec(self):
|
85 |
+
'''Loads raw features from a tfrecord file and returns them as raw inputs'''
|
86 |
+
ds = tf.io.matching_files(self.args.data_dir)
|
87 |
+
files = tf.random.shuffle(ds)
|
88 |
+
|
89 |
+
shards = tf.data.Dataset.from_tensor_slices(files)
|
90 |
+
dataset = shards.interleave(tf.data.TFRecordDataset)
|
91 |
+
dataset = dataset.shuffle(buffer_size=100)
|
92 |
+
|
93 |
+
dataset = dataset.map(_parse_function, num_parallel_calls = tf.data.AUTOTUNE)
|
94 |
+
dataset = dataset.map(decode_train_inputs, num_parallel_calls = tf.data.AUTOTUNE)
|
95 |
+
dataset = dataset.padded_batch(batch_size = self.args.batch_size)
|
96 |
+
return dataset
|
97 |
+
|
98 |
+
|
99 |
+
def __len__(self):
|
100 |
+
self.samples = self.load_features_from_tfrec(self.args.data_dir)
|
101 |
+
cnt = self.samples.reduce(np.int64(0), lambda x, _: x + 1)
|
102 |
+
cnt = cnt.numpy()
|
103 |
+
return cnt
|
104 |
+
|
105 |
+
class FakeAVCelebDatasetVal:
|
106 |
+
|
107 |
+
def __init__(self, args):
|
108 |
+
self.args = args
|
109 |
+
self.samples = self.load_features_from_tfrec()
|
110 |
+
|
111 |
+
def load_features_from_tfrec(self):
|
112 |
+
'''Loads raw features from a tfrecord file and returns them as raw inputs'''
|
113 |
+
ds = tf.io.matching_files(self.args.data_dir)
|
114 |
+
files = tf.random.shuffle(ds)
|
115 |
+
|
116 |
+
shards = tf.data.Dataset.from_tensor_slices(files)
|
117 |
+
dataset = shards.interleave(tf.data.TFRecordDataset)
|
118 |
+
dataset = dataset.shuffle(buffer_size=100)
|
119 |
+
|
120 |
+
dataset = dataset.map(_parse_function, num_parallel_calls = tf.data.AUTOTUNE)
|
121 |
+
dataset = dataset.map(decode_inputs, num_parallel_calls = tf.data.AUTOTUNE)
|
122 |
+
dataset = dataset.padded_batch(batch_size = self.args.batch_size)
|
123 |
+
return dataset
|
124 |
+
|
125 |
+
|
126 |
+
def __len__(self):
|
127 |
+
self.samples = self.load_features_from_tfrec(self.args.data_dir)
|
128 |
+
cnt = self.samples.reduce(np.int64(0), lambda x, _: x + 1)
|
129 |
+
cnt = cnt.numpy()
|
130 |
+
return cnt
|
data/generate_dataset_to_tfrecord.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Code outsourced from https://github.com/deepmind/dmvr/tree/master and later modified.
|
2 |
+
|
3 |
+
"""Python script to generate TFRecords of SequenceExample from raw videos."""
|
4 |
+
|
5 |
+
import contextlib
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import cv2
|
9 |
+
from typing import Dict, Optional, Sequence
|
10 |
+
import moviepy.editor
|
11 |
+
from absl import app
|
12 |
+
from absl import flags
|
13 |
+
import ffmpeg
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import tensorflow as tf
|
17 |
+
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings('ignore')
|
20 |
+
|
21 |
+
flags.DEFINE_string("csv_path", "fakeavceleb_1k.csv", "Input csv")
|
22 |
+
flags.DEFINE_string("output_path", "fakeavceleb_tfrec", "Tfrecords output path.")
|
23 |
+
flags.DEFINE_string("video_root_path", "./",
|
24 |
+
"Root directory containing the raw videos.")
|
25 |
+
flags.DEFINE_integer(
|
26 |
+
"num_shards", 4, "Number of shards to output, -1 means"
|
27 |
+
"it will automatically adapt to the sqrt(num_examples).")
|
28 |
+
flags.DEFINE_bool("decode_audio", False, "Whether or not to decode the audio")
|
29 |
+
flags.DEFINE_bool("shuffle_csv", False, "Whether or not to shuffle the csv.")
|
30 |
+
FLAGS = flags.FLAGS
|
31 |
+
|
32 |
+
|
33 |
+
_JPEG_HEADER = b"\xff\xd8"
|
34 |
+
|
35 |
+
|
36 |
+
@contextlib.contextmanager
|
37 |
+
def _close_on_exit(writers):
|
38 |
+
"""Call close on all writers on exit."""
|
39 |
+
try:
|
40 |
+
yield writers
|
41 |
+
finally:
|
42 |
+
for writer in writers:
|
43 |
+
writer.close()
|
44 |
+
|
45 |
+
|
46 |
+
def add_float_list(key: str, values: Sequence[float],
|
47 |
+
sequence: tf.train.SequenceExample):
|
48 |
+
sequence.feature_lists.feature_list[key].feature.add(
|
49 |
+
).float_list.value[:] = values
|
50 |
+
|
51 |
+
|
52 |
+
def add_bytes_list(key: str, values: Sequence[bytes],
|
53 |
+
sequence: tf.train.SequenceExample):
|
54 |
+
sequence.feature_lists.feature_list[key].feature.add().bytes_list.value[:] = values
|
55 |
+
|
56 |
+
|
57 |
+
def add_int_list(key: str, values: Sequence[int],
|
58 |
+
sequence: tf.train.SequenceExample):
|
59 |
+
sequence.feature_lists.feature_list[key].feature.add().int64_list.value[:] = values
|
60 |
+
|
61 |
+
|
62 |
+
def set_context_int_list(key: str, value: Sequence[int],
|
63 |
+
sequence: tf.train.SequenceExample):
|
64 |
+
sequence.context.feature[key].int64_list.value[:] = value
|
65 |
+
|
66 |
+
|
67 |
+
def set_context_bytes(key: str, value: bytes,
|
68 |
+
sequence: tf.train.SequenceExample):
|
69 |
+
sequence.context.feature[key].bytes_list.value[:] = (value,)
|
70 |
+
|
71 |
+
def set_context_bytes_list(key: str, value: Sequence[bytes],
|
72 |
+
sequence: tf.train.SequenceExample):
|
73 |
+
sequence.context.feature[key].bytes_list.value[:] = value
|
74 |
+
|
75 |
+
|
76 |
+
def set_context_float(key: str, value: float,
|
77 |
+
sequence: tf.train.SequenceExample):
|
78 |
+
sequence.context.feature[key].float_list.value[:] = (value,)
|
79 |
+
|
80 |
+
|
81 |
+
def set_context_int(key: str, value: int, sequence: tf.train.SequenceExample):
|
82 |
+
sequence.context.feature[key].int64_list.value[:] = (value,)
|
83 |
+
|
84 |
+
|
85 |
+
def extract_frames(video_path, fps = 10, min_resize = 256):
|
86 |
+
'''Load n number of frames from a video'''
|
87 |
+
v_cap = cv2.VideoCapture(video_path)
|
88 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
89 |
+
|
90 |
+
if fps is None:
|
91 |
+
sample = np.arange(0, v_len)
|
92 |
+
else:
|
93 |
+
sample = np.linspace(0, v_len - 1, fps).astype(int)
|
94 |
+
|
95 |
+
frames = []
|
96 |
+
for j in range(v_len):
|
97 |
+
success = v_cap.grab()
|
98 |
+
if j in sample:
|
99 |
+
success, frame = v_cap.retrieve()
|
100 |
+
if not success:
|
101 |
+
continue
|
102 |
+
|
103 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
104 |
+
frame = cv2.resize(frame, (min_resize, min_resize))
|
105 |
+
frames.append(frame)
|
106 |
+
|
107 |
+
v_cap.release()
|
108 |
+
frame_np = np.stack(frames)
|
109 |
+
return frame_np.tobytes()
|
110 |
+
|
111 |
+
def extract_audio(video_path: str,
|
112 |
+
sampling_rate: int = 16_000):
|
113 |
+
"""Extract raw mono audio float list from video_path with ffmpeg."""
|
114 |
+
video = moviepy.editor.VideoFileClip(video_path)
|
115 |
+
audio = video.audio.to_soundarray()
|
116 |
+
#Load first channel.
|
117 |
+
audio = audio[:, 0]
|
118 |
+
|
119 |
+
return np.array(audio)
|
120 |
+
|
121 |
+
#Each of the features can be coerced into a tf.train.Example-compatible type using one of the _bytes_feature, _float_feature and the _int64_feature.
|
122 |
+
#You can then create a tf.train.Example message from these encoded features.
|
123 |
+
|
124 |
+
def serialize_example(video_path: str, label_name: str, label_map: Optional[Dict[str, int]] = None):
|
125 |
+
# Initiate the sequence example.
|
126 |
+
seq_example = tf.train.SequenceExample()
|
127 |
+
|
128 |
+
imgs_encoded = extract_frames(video_path, fps = 10)
|
129 |
+
|
130 |
+
audio = extract_audio(video_path)
|
131 |
+
|
132 |
+
set_context_bytes(f'image/encoded', imgs_encoded, seq_example)
|
133 |
+
set_context_bytes("video_path", video_path.encode(), seq_example)
|
134 |
+
set_context_bytes("WAVEFORM/feature/floats", audio.tobytes(), seq_example)
|
135 |
+
set_context_int("clip/label/index", label_map[label_name], seq_example)
|
136 |
+
set_context_bytes("clip/label/text", label_name.encode(), seq_example)
|
137 |
+
return seq_example
|
138 |
+
|
139 |
+
|
140 |
+
def main(argv):
|
141 |
+
del argv
|
142 |
+
# reads the input csv.
|
143 |
+
input_csv = pd.read_csv(FLAGS.csv_path)
|
144 |
+
if FLAGS.num_shards == -1:
|
145 |
+
num_shards = int(math.sqrt(len(input_csv)))
|
146 |
+
else:
|
147 |
+
num_shards = FLAGS.num_shards
|
148 |
+
# Set up the TFRecordWriters.
|
149 |
+
basename = os.path.splitext(os.path.basename(FLAGS.csv_path))[0]
|
150 |
+
shard_names = [
|
151 |
+
os.path.join(FLAGS.output_path, f"{basename}-{i:05d}-of-{num_shards:05d}")
|
152 |
+
for i in range(num_shards)
|
153 |
+
]
|
154 |
+
writers = [tf.io.TFRecordWriter(shard_name) for shard_name in shard_names]
|
155 |
+
|
156 |
+
if "label" in input_csv:
|
157 |
+
unique_labels = list(set(input_csv["label"].values))
|
158 |
+
l_map = {unique_labels[i]: i for i in range(len(unique_labels))}
|
159 |
+
else:
|
160 |
+
l_map = None
|
161 |
+
|
162 |
+
if FLAGS.shuffle_csv:
|
163 |
+
input_csv = input_csv.sample(frac=1)
|
164 |
+
with _close_on_exit(writers) as writers:
|
165 |
+
row_count = 0
|
166 |
+
for row in input_csv.itertuples():
|
167 |
+
index = row[0]
|
168 |
+
v = row[1]
|
169 |
+
if os.name == 'posix':
|
170 |
+
v = v.str.replace('\\', '/')
|
171 |
+
l = row[2]
|
172 |
+
row_count += 1
|
173 |
+
print("Processing example %d of %d (%d%%) \r" %(row_count, len(input_csv), row_count * 100 / len(input_csv)), end="")
|
174 |
+
seq_ex = serialize_example(video_path = v, label_name = l,label_map = l_map)
|
175 |
+
writers[index % len(writers)].write(seq_ex.SerializeToString())
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
app.run(main)
|
datasets/fakeavceleb_100.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
video_path,label
|
2 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00076/00109.mp4,real
|
3 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00166/00010.mp4,real
|
4 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00173/00118.mp4,real
|
5 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00366/00118.mp4,real
|
6 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00391/00052.mp4,real
|
7 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00475/00099.mp4,real
|
8 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00476/00109.mp4,real
|
9 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00478/00206.mp4,real
|
10 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00518/00031.mp4,real
|
11 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00701/00092.mp4,real
|
12 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00761/00072.mp4,real
|
13 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00781/00092.mp4,real
|
14 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00830/00143.mp4,real
|
15 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00944/00135.mp4,real
|
16 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00987/00160.mp4,real
|
17 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01036/00010.mp4,real
|
18 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01076/00005.mp4,real
|
19 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01170/00021.mp4,real
|
20 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01171/00053.mp4,real
|
21 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01179/00160.mp4,real
|
22 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01207/00320.mp4,real
|
23 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01236/00005.mp4,real
|
24 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01392/00167.mp4,real
|
25 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01452/00001.mp4,real
|
26 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01521/00109.mp4,real
|
27 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01528/00017.mp4,real
|
28 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01530/00002.mp4,real
|
29 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01544/00044.mp4,real
|
30 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01597/00005.mp4,real
|
31 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01598/00044.mp4,real
|
32 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01610/00090.mp4,real
|
33 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01637/00002.mp4,real
|
34 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01691/00045.mp4,real
|
35 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01717/00005.mp4,real
|
36 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01779/00010.mp4,real
|
37 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01835/00130.mp4,real
|
38 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01856/00006.mp4,real
|
39 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01920/00099.mp4,real
|
40 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01933/00028.mp4,real
|
41 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01972/00078.mp4,real
|
42 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01995/00071.mp4,real
|
43 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02005/00052.mp4,real
|
44 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02040/00476.mp4,real
|
45 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02051/00015.mp4,real
|
46 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02268/00036.mp4,real
|
47 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02296/00019.mp4,real
|
48 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02316/00094.mp4,real
|
49 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02342/00191.mp4,real
|
50 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02494/00050.mp4,real
|
51 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id04727/00007.mp4,real
|
52 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id00476_wavtolip.mp4,fake
|
53 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id01076_wavtolip.mp4,fake
|
54 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id01179_wavtolip.mp4,fake
|
55 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id02005_wavtolip.mp4,fake
|
56 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id02342_wavtolip.mp4,fake
|
57 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id00518_wavtolip.mp4,fake
|
58 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id00761_wavtolip.mp4,fake
|
59 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id00987_wavtolip.mp4,fake
|
60 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id01856_wavtolip.mp4,fake
|
61 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id02296_wavtolip.mp4,fake
|
62 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id00166_wavtolip.mp4,fake
|
63 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id00701_wavtolip.mp4,fake
|
64 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id01236_wavtolip.mp4,fake
|
65 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id01521_wavtolip.mp4,fake
|
66 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id01598_wavtolip.mp4,fake
|
67 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01392_wavtolip.mp4,fake
|
68 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01528_wavtolip.mp4,fake
|
69 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01691_wavtolip.mp4,fake
|
70 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01995_wavtolip.mp4,fake
|
71 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id02296_wavtolip.mp4,fake
|
72 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id00166_wavtolip.mp4,fake
|
73 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id00478_wavtolip.mp4,fake
|
74 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id01452_wavtolip.mp4,fake
|
75 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id01717_wavtolip.mp4,fake
|
76 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id01995_wavtolip.mp4,fake
|
77 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id00166_wavtolip.mp4,fake
|
78 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id00701_wavtolip.mp4,fake
|
79 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id00761_wavtolip.mp4,fake
|
80 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id01170_wavtolip.mp4,fake
|
81 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id02005_wavtolip.mp4,fake
|
82 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id00076_wavtolip.mp4,fake
|
83 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id01036_wavtolip.mp4,fake
|
84 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id01452_wavtolip.mp4,fake
|
85 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id01528_wavtolip.mp4,fake
|
86 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id02005_wavtolip.mp4,fake
|
87 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id00166_wavtolip.mp4,fake
|
88 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id00761_wavtolip.mp4,fake
|
89 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id01171_wavtolip.mp4,fake
|
90 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id01530_wavtolip.mp4,fake
|
91 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id01598_wavtolip.mp4,fake
|
92 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id00166_wavtolip.mp4,fake
|
93 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id00173_wavtolip.mp4,fake
|
94 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id01530_wavtolip.mp4,fake
|
95 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id01598_wavtolip.mp4,fake
|
96 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id01779_wavtolip.mp4,fake
|
97 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id01170_wavtolip.mp4,fake
|
98 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id01779_wavtolip.mp4,fake
|
99 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id02316_wavtolip.mp4,fake
|
100 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id02342_wavtolip.mp4,fake
|
101 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id02494_wavtolip.mp4,fake
|
datasets/fakeavceleb_1k.csv
ADDED
@@ -0,0 +1,1001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
video_path,label
|
2 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00076\00109.mp4,real
|
3 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00166\00010.mp4,real
|
4 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00173\00118.mp4,real
|
5 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00366\00118.mp4,real
|
6 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00391\00052.mp4,real
|
7 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00475\00099.mp4,real
|
8 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00476\00109.mp4,real
|
9 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00478\00206.mp4,real
|
10 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00518\00031.mp4,real
|
11 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00701\00092.mp4,real
|
12 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00761\00072.mp4,real
|
13 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00781\00092.mp4,real
|
14 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00830\00143.mp4,real
|
15 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00944\00135.mp4,real
|
16 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00987\00160.mp4,real
|
17 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01036\00010.mp4,real
|
18 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01076\00005.mp4,real
|
19 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01170\00021.mp4,real
|
20 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01171\00053.mp4,real
|
21 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01179\00160.mp4,real
|
22 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01207\00320.mp4,real
|
23 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01236\00005.mp4,real
|
24 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01392\00167.mp4,real
|
25 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01452\00001.mp4,real
|
26 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01521\00109.mp4,real
|
27 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01528\00017.mp4,real
|
28 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01530\00002.mp4,real
|
29 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01544\00044.mp4,real
|
30 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01597\00005.mp4,real
|
31 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01598\00044.mp4,real
|
32 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01610\00090.mp4,real
|
33 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01637\00002.mp4,real
|
34 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01691\00045.mp4,real
|
35 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01717\00005.mp4,real
|
36 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01779\00010.mp4,real
|
37 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01835\00130.mp4,real
|
38 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01856\00006.mp4,real
|
39 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01920\00099.mp4,real
|
40 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01933\00028.mp4,real
|
41 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01972\00078.mp4,real
|
42 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01995\00071.mp4,real
|
43 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02005\00052.mp4,real
|
44 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02040\00476.mp4,real
|
45 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02051\00015.mp4,real
|
46 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02268\00036.mp4,real
|
47 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02296\00019.mp4,real
|
48 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02316\00094.mp4,real
|
49 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02342\00191.mp4,real
|
50 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02494\00050.mp4,real
|
51 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id04727\00007.mp4,real
|
52 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00220\00027.mp4,real
|
53 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00359\00053.mp4,real
|
54 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00371\00099.mp4,real
|
55 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00460\00005.mp4,real
|
56 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00568\00384.mp4,real
|
57 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00577\00010.mp4,real
|
58 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00592\00017.mp4,real
|
59 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00707\00052.mp4,real
|
60 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00829\00271.mp4,real
|
61 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00832\00078.mp4,real
|
62 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01178\00028.mp4,real
|
63 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01532\00065.mp4,real
|
64 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01661\00059.mp4,real
|
65 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01783\00015.mp4,real
|
66 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01838\00126.mp4,real
|
67 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01907\00148.mp4,real
|
68 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02071\00195.mp4,real
|
69 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02301\00092.mp4,real
|
70 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02508\00083.mp4,real
|
71 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02586\00042.mp4,real
|
72 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02617\00028.mp4,real
|
73 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02721\00424.mp4,real
|
74 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02808\00056.mp4,real
|
75 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02824\00130.mp4,real
|
76 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02838\00080.mp4,real
|
77 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02948\00298.mp4,real
|
78 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03103\00130.mp4,real
|
79 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03569\00065.mp4,real
|
80 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03656\00052.mp4,real
|
81 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03658\00077.mp4,real
|
82 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03713\00249.mp4,real
|
83 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03747\00273.mp4,real
|
84 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04055\00001.mp4,real
|
85 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04245\00072.mp4,real
|
86 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04374\00032.mp4,real
|
87 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04376\00181.mp4,real
|
88 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04437\00002.mp4,real
|
89 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04540\00078.mp4,real
|
90 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04547\00052.mp4,real
|
91 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04689\00005.mp4,real
|
92 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04705\00408.mp4,real
|
93 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04736\00083.mp4,real
|
94 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04820\00015.mp4,real
|
95 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04939\00174.mp4,real
|
96 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05106\00078.mp4,real
|
97 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05231\00149.mp4,real
|
98 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05235\00052.mp4,real
|
99 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05251\00033.mp4,real
|
100 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05252\00052.mp4,real
|
101 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05980\00143.mp4,real
|
102 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00018\00181.mp4,real
|
103 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00020\00206.mp4,real
|
104 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00021\00010.mp4,real
|
105 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00029\00288.mp4,real
|
106 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00049\00118.mp4,real
|
107 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00052\00015.mp4,real
|
108 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00060\00307.mp4,real
|
109 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00062\00278.mp4,real
|
110 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00087\00002.mp4,real
|
111 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00088\00005.mp4,real
|
112 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00169\00021.mp4,real
|
113 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00179\00143.mp4,real
|
114 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00184\00241.mp4,real
|
115 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00243\00037.mp4,real
|
116 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00264\00257.mp4,real
|
117 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00345\00243.mp4,real
|
118 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00529\00409.mp4,real
|
119 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00696\00005.mp4,real
|
120 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00708\00043.mp4,real
|
121 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00775\00092.mp4,real
|
122 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00777\00160.mp4,real
|
123 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00943\00304.mp4,real
|
124 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00945\00107.mp4,real
|
125 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00971\00253.mp4,real
|
126 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01035\00012.mp4,real
|
127 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01042\00154.mp4,real
|
128 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01044\00336.mp4,real
|
129 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01048\00160.mp4,real
|
130 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01096\00037.mp4,real
|
131 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01105\00083.mp4,real
|
132 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01124\00063.mp4,real
|
133 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01163\00195.mp4,real
|
134 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01168\00028.mp4,real
|
135 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01172\00015.mp4,real
|
136 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01175\00025.mp4,real
|
137 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01182\00167.mp4,real
|
138 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01192\00217.mp4,real
|
139 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01201\00028.mp4,real
|
140 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01210\00283.mp4,real
|
141 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01211\00023.mp4,real
|
142 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01239\00280.mp4,real
|
143 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03525\00048.mp4,real
|
144 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03668\00143.mp4,real
|
145 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03678\00078.mp4,real
|
146 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03757\00149.mp4,real
|
147 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04034\00009.mp4,real
|
148 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04073\00021.mp4,real
|
149 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04216\00470.mp4,real
|
150 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04219\00130.mp4,real
|
151 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04221\00053.mp4,real
|
152 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00025\00025.mp4,real
|
153 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00097\00162.mp4,real
|
154 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00098\00004.mp4,real
|
155 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00100\00028.mp4,real
|
156 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00145\00043.mp4,real
|
157 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00180\00206.mp4,real
|
158 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00190\00072.mp4,real
|
159 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00231\00037.mp4,real
|
160 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00261\00048.mp4,real
|
161 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00272\00195.mp4,real
|
162 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00291\00052.mp4,real
|
163 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00381\00030.mp4,real
|
164 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00383\00171.mp4,real
|
165 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00385\00439.mp4,real
|
166 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00398\00016.mp4,real
|
167 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00418\00052.mp4,real
|
168 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00428\00017.mp4,real
|
169 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00431\00039.mp4,real
|
170 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00458\00072.mp4,real
|
171 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00462\00143.mp4,real
|
172 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00555\00005.mp4,real
|
173 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00575\00092.mp4,real
|
174 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00616\00305.mp4,real
|
175 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00618\00195.mp4,real
|
176 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00680\00110.mp4,real
|
177 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00752\00340.mp4,real
|
178 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00835\00195.mp4,real
|
179 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00841\00078.mp4,real
|
180 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00842\00043.mp4,real
|
181 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00848\00028.mp4,real
|
182 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01004\00028.mp4,real
|
183 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01005\00028.mp4,real
|
184 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01075\00160.mp4,real
|
185 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01091\00236.mp4,real
|
186 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01216\00025.mp4,real
|
187 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01217\00005.mp4,real
|
188 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01223\00255.mp4,real
|
189 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01225\00300.mp4,real
|
190 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01227\00052.mp4,real
|
191 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01231\00015.mp4,real
|
192 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01238\00037.mp4,real
|
193 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01245\00028.mp4,real
|
194 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01248\00005.mp4,real
|
195 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id02464\00002.mp4,real
|
196 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id02466\00136.mp4,real
|
197 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03556\00043.mp4,real
|
198 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03605\00048.mp4,real
|
199 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03696\00160.mp4,real
|
200 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03707\00055.mp4,real
|
201 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03781\00113.mp4,real
|
202 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00056\00028.mp4,real
|
203 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00126\00173.mp4,real
|
204 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00560\00041.mp4,real
|
205 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00597\00019.mp4,real
|
206 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00740\00015.mp4,real
|
207 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00863\00069.mp4,real
|
208 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01204\00092.mp4,real
|
209 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01212\00183.mp4,real
|
210 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01215\00001.mp4,real
|
211 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01589\00017.mp4,real
|
212 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01683\00052.mp4,real
|
213 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02332\00055.mp4,real
|
214 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02365\00028.mp4,real
|
215 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02493\00073.mp4,real
|
216 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02553\00043.mp4,real
|
217 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02561\02561.mp4,real
|
218 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03028\00466.mp4,real
|
219 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03168\03168.mp4,real
|
220 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03889\00052.mp4,real
|
221 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03965\00051.mp4,real
|
222 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04111\00015.mp4,real
|
223 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04222\00078.mp4,real
|
224 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04687\00066.mp4,real
|
225 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04691\1.mp4,real
|
226 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04726\00245.mp4,real
|
227 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04774\00032.mp4,real
|
228 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04789\002121.mp4,real
|
229 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04884\00028.mp4,real
|
230 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05268\00010.mp4,real
|
231 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05332\00065.mp4,real
|
232 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05383\00015.mp4,real
|
233 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05479\05479.mp4,real
|
234 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05743\00015.mp4,real
|
235 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06152\06152.mp4,real
|
236 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06269\00005.mp4,real
|
237 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06467\00010.mp4,real
|
238 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06470\00052.mp4,real
|
239 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06535\00183.mp4,real
|
240 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06591\00021.mp4,real
|
241 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06594\00002.mp4,real
|
242 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06776\00021.mp4,real
|
243 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06807\00015.mp4,real
|
244 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06878\00001.mp4,real
|
245 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id07102\00052.mp4,real
|
246 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id07338\00003.mp4,real
|
247 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id08299\00110.mp4,real
|
248 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id08613\00074.mp4,real
|
249 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id08652\00006.mp4,real
|
250 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id09053\00005.mp4,real
|
251 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id09143\00056.mp4,real
|
252 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00137\00025.mp4,real
|
253 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00363\00014.mp4,real
|
254 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00430\00209.mp4,real
|
255 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00566\00032.mp4,real
|
256 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00579\00030.mp4,real
|
257 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00582\00006.mp4,real
|
258 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00763\00074.mp4,real
|
259 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00935\00005.mp4,real
|
260 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id01281\00040.mp4,real
|
261 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id01451\00099.mp4,real
|
262 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id02587\00020.mp4,real
|
263 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id02807\00032.mp4,real
|
264 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id03211\00032.mp4,real
|
265 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id03379\00032.mp4,real
|
266 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id03940\00025.mp4,real
|
267 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04057\00015.mp4,real
|
268 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04066\00013.mp4,real
|
269 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04144\00028.mp4,real
|
270 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04414\00001.mp4,real
|
271 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04701\00017.mp4,real
|
272 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05576\00368.mp4,real
|
273 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05620\00005.mp4,real
|
274 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05631\00073.mp4,real
|
275 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05844\00072.mp4,real
|
276 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06054\00010.mp4,real
|
277 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06060\00219.mp4,real
|
278 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06061\00002.mp4,real
|
279 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06065\00160.mp4,real
|
280 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06066\00028.mp4,real
|
281 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06158\00015.mp4,real
|
282 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06225\00005.mp4,real
|
283 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06388\00005.mp4,real
|
284 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06427\00138.mp4,real
|
285 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06443\00232.mp4,real
|
286 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06462\00014.mp4,real
|
287 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07039\00105.mp4,real
|
288 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07383\00011.mp4,real
|
289 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07739\00019.mp4,real
|
290 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07799\00063.mp4,real
|
291 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07901\00040.mp4,real
|
292 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08139\00067.mp4,real
|
293 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08397\00167.mp4,real
|
294 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08402\00092.mp4,real
|
295 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08819\00052.mp4,real
|
296 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09116\00026.mp4,real
|
297 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09125\00098.mp4,real
|
298 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09171\00092.mp4,real
|
299 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09174\00015.mp4,real
|
300 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09175\00072.mp4,real
|
301 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09181\00048.mp4,real
|
302 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00055\00120.mp4,real
|
303 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00063\00021.mp4,real
|
304 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00171\00092.mp4,real
|
305 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00183\00015.mp4,real
|
306 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00185\00015.mp4,real
|
307 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00186\00120.mp4,real
|
308 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00187\00360.mp4,real
|
309 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00192\00078.mp4,real
|
310 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00225\00078.mp4,real
|
311 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00241\00015.mp4,real
|
312 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00253\00021.mp4,real
|
313 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00265\00130.mp4,real
|
314 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00266\00470.mp4,real
|
315 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00282\00268.mp4,real
|
316 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00292\00072.mp4,real
|
317 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00305\00113.mp4,real
|
318 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00306\00015.mp4,real
|
319 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00358\00217.mp4,real
|
320 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00368\00078.mp4,real
|
321 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00415\00017.mp4,real
|
322 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00498\00014.mp4,real
|
323 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00519\00028.mp4,real
|
324 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00520\00187.mp4,real
|
325 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00535\00005.mp4,real
|
326 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00548\00015.mp4,real
|
327 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00554\00028.mp4,real
|
328 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00559\00078.mp4,real
|
329 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00594\00005.mp4,real
|
330 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00694\00340.mp4,real
|
331 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00709\00206.mp4,real
|
332 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00909\00037.mp4,real
|
333 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00919\00063.mp4,real
|
334 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00946\00126.mp4,real
|
335 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00963\00028.mp4,real
|
336 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00981\00092.mp4,real
|
337 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00990\00160.mp4,real
|
338 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00999\00028.mp4,real
|
339 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01051\00322.mp4,real
|
340 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01052\00076.mp4,real
|
341 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01058\00005.mp4,real
|
342 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01098\00044.mp4,real
|
343 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01099\00206.mp4,real
|
344 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01102\00197.mp4,real
|
345 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01123\00072.mp4,real
|
346 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01126\00040.mp4,real
|
347 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01154\00118.mp4,real
|
348 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01156\00078.mp4,real
|
349 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01157\00048.mp4,real
|
350 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id02567\00040.mp4,real
|
351 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id03205\00150.mp4,real
|
352 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00042\00028.mp4,real
|
353 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00068\00004.mp4,real
|
354 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00071\00014.mp4,real
|
355 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00188\00020.mp4,real
|
356 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00232\00025.mp4,real
|
357 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00234\00063.mp4,real
|
358 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00262\00028.mp4,real
|
359 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00270\00088.mp4,real
|
360 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00271\00028.mp4,real
|
361 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00287\00005.mp4,real
|
362 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00325\00015.mp4,real
|
363 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00328\00092.mp4,real
|
364 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00330\00118.mp4,real
|
365 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00332\00293.mp4,real
|
366 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00365\00078.mp4,real
|
367 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00373\00028.mp4,real
|
368 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00374\00311.mp4,real
|
369 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00379\00043.mp4,real
|
370 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00395\00420.mp4,real
|
371 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00403\00052.mp4,real
|
372 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00434\00046.mp4,real
|
373 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00484\00202.mp4,real
|
374 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00491\00122.mp4,real
|
375 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00495\00027.mp4,real
|
376 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00496\00015.mp4,real
|
377 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00569\00239.mp4,real
|
378 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00581\00010.mp4,real
|
379 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00589\00130.mp4,real
|
380 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00591\00001.mp4,real
|
381 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00633\00088.mp4,real
|
382 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00634\00078.mp4,real
|
383 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00735\00037.mp4,real
|
384 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00806\00005.mp4,real
|
385 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00813\00169.mp4,real
|
386 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00823\00125.mp4,real
|
387 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00826\00065.mp4,real
|
388 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00897\00005.mp4,real
|
389 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id01001\00086.mp4,real
|
390 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id01002\00043.mp4,real
|
391 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id01018\00072.mp4,real
|
392 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03371\00430.mp4,real
|
393 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03589\00002.mp4,real
|
394 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03620\00081.mp4,real
|
395 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03649\00001.mp4,real
|
396 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03651\00092.mp4,real
|
397 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03716\00040.mp4,real
|
398 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03816\00093.mp4,real
|
399 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03844\00028.mp4,real
|
400 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03858\00092.mp4,real
|
401 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03941\00021.mp4,real
|
402 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00032\00028.mp4,real
|
403 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00033\00276.mp4,real
|
404 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00078\00114.mp4,real
|
405 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00082\00052.mp4,real
|
406 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00103\00241.mp4,real
|
407 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00350\00015.mp4,real
|
408 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00414\00052.mp4,real
|
409 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00459\00382.mp4,real
|
410 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00685\00146.mp4,real
|
411 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00732\00118.mp4,real
|
412 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00745\00165.mp4,real
|
413 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00769\00015.mp4,real
|
414 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00773\00038.mp4,real
|
415 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00816\00118.mp4,real
|
416 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00857\00347.mp4,real
|
417 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00860\00154.mp4,real
|
418 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03180\00039.mp4,real
|
419 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03344\00114.mp4,real
|
420 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03599\00072.mp4,real
|
421 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03945\00063.mp4,real
|
422 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04526\00317.mp4,real
|
423 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04537\00083.mp4,real
|
424 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04554\00118.mp4,real
|
425 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04560\00195.mp4,real
|
426 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04561\00248.mp4,real
|
427 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04562\00221.mp4,real
|
428 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04599\00111.mp4,real
|
429 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04601\00118.mp4,real
|
430 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04928\00027.mp4,real
|
431 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06334\00015.mp4,real
|
432 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06354\00021.mp4,real
|
433 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06355\00347.mp4,real
|
434 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06753\00021.mp4,real
|
435 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07058\00010.mp4,real
|
436 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07108\00412.mp4,real
|
437 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07161\00159.mp4,real
|
438 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07163\00141.mp4,real
|
439 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07165\00368.mp4,real
|
440 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07179\00206.mp4,real
|
441 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07182\00040.mp4,real
|
442 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07194\00014.mp4,real
|
443 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07195\00186.mp4,real
|
444 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07200\00045.mp4,real
|
445 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07210\00005.mp4,real
|
446 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07233\00010.mp4,real
|
447 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07463\00028.mp4,real
|
448 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07768\00143.mp4,real
|
449 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id08313\00202.mp4,real
|
450 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id08314\00028.mp4,real
|
451 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id08457\00417.mp4,real
|
452 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00043\00135.mp4,real
|
453 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00080\00281.mp4,real
|
454 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00149\00284.mp4,real
|
455 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00235\00052.mp4,real
|
456 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00417\00069.mp4,real
|
457 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00461\00043.mp4,real
|
458 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00488\00028.mp4,real
|
459 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00739\00005.mp4,real
|
460 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00747\00053.mp4,real
|
461 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id01026\00083.mp4,real
|
462 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id02089\00092.mp4,real
|
463 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id02310\00139.mp4,real
|
464 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id02619\00015.mp4,real
|
465 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03559\00023.mp4,real
|
466 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03815\00118.mp4,real
|
467 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03897\00021.mp4,real
|
468 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03985\00005.mp4,real
|
469 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04070\00072.mp4,real
|
470 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04490\00054.mp4,real
|
471 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04529\00186.mp4,real
|
472 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04530\00231.mp4,real
|
473 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04564\00417.mp4,real
|
474 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04582\00180.mp4,real
|
475 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04583\00077.mp4,real
|
476 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04927\00013.mp4,real
|
477 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05434\00052.mp4,real
|
478 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05435\00107.mp4,real
|
479 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05478\00135.mp4,real
|
480 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05845\00027.mp4,real
|
481 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05920\00161.mp4,real
|
482 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05931\00013.mp4,real
|
483 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06232\00025.mp4,real
|
484 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06254\00043.mp4,real
|
485 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06268\00159.mp4,real
|
486 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06343\00023.mp4,real
|
487 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06428\00043.mp4,real
|
488 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06437\00028.mp4,real
|
489 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06438\00110.mp4,real
|
490 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06439\00118.mp4,real
|
491 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06445\00150.mp4,real
|
492 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06752\00221.mp4,real
|
493 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07008\00175.mp4,real
|
494 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07049\00043.mp4,real
|
495 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07051\00083.mp4,real
|
496 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07078\00405.mp4,real
|
497 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07136\00052.mp4,real
|
498 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07236\00143.mp4,real
|
499 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07377\00025.mp4,real
|
500 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07686\00254.mp4,real
|
501 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07689\00028.mp4,real
|
502 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id00476_wavtolip.mp4,fake
|
503 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id01076_wavtolip.mp4,fake
|
504 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id01179_wavtolip.mp4,fake
|
505 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id02005_wavtolip.mp4,fake
|
506 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id02342_wavtolip.mp4,fake
|
507 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id00518_wavtolip.mp4,fake
|
508 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id00761_wavtolip.mp4,fake
|
509 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id00987_wavtolip.mp4,fake
|
510 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id01856_wavtolip.mp4,fake
|
511 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id02296_wavtolip.mp4,fake
|
512 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id00166_wavtolip.mp4,fake
|
513 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id00701_wavtolip.mp4,fake
|
514 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id01236_wavtolip.mp4,fake
|
515 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id01521_wavtolip.mp4,fake
|
516 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id01598_wavtolip.mp4,fake
|
517 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01392_wavtolip.mp4,fake
|
518 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01528_wavtolip.mp4,fake
|
519 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01691_wavtolip.mp4,fake
|
520 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01995_wavtolip.mp4,fake
|
521 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id02296_wavtolip.mp4,fake
|
522 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id00166_wavtolip.mp4,fake
|
523 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id00478_wavtolip.mp4,fake
|
524 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id01452_wavtolip.mp4,fake
|
525 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id01717_wavtolip.mp4,fake
|
526 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id01995_wavtolip.mp4,fake
|
527 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id00166_wavtolip.mp4,fake
|
528 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id00701_wavtolip.mp4,fake
|
529 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id00761_wavtolip.mp4,fake
|
530 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id01170_wavtolip.mp4,fake
|
531 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id02005_wavtolip.mp4,fake
|
532 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id00076_wavtolip.mp4,fake
|
533 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id01036_wavtolip.mp4,fake
|
534 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id01452_wavtolip.mp4,fake
|
535 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id01528_wavtolip.mp4,fake
|
536 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id02005_wavtolip.mp4,fake
|
537 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id00166_wavtolip.mp4,fake
|
538 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id00761_wavtolip.mp4,fake
|
539 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id01171_wavtolip.mp4,fake
|
540 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id01530_wavtolip.mp4,fake
|
541 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id01598_wavtolip.mp4,fake
|
542 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id00166_wavtolip.mp4,fake
|
543 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id00173_wavtolip.mp4,fake
|
544 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id01530_wavtolip.mp4,fake
|
545 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id01598_wavtolip.mp4,fake
|
546 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id01779_wavtolip.mp4,fake
|
547 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id01170_wavtolip.mp4,fake
|
548 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id01779_wavtolip.mp4,fake
|
549 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id02316_wavtolip.mp4,fake
|
550 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id02342_wavtolip.mp4,fake
|
551 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id02494_wavtolip.mp4,fake
|
552 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id00761_wavtolip.mp4,fake
|
553 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id01179_wavtolip.mp4,fake
|
554 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id01610_wavtolip.mp4,fake
|
555 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id02005_wavtolip.mp4,fake
|
556 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id02342_wavtolip.mp4,fake
|
557 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id01530_wavtolip.mp4,fake
|
558 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id01920_wavtolip.mp4,fake
|
559 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id01972_wavtolip.mp4,fake
|
560 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id02316_wavtolip.mp4,fake
|
561 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id04727_wavtolip.mp4,fake
|
562 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00076_wavtolip.mp4,fake
|
563 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00761_wavtolip.mp4,fake
|
564 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00781_wavtolip.mp4,fake
|
565 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00830_wavtolip.mp4,fake
|
566 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id01207_wavtolip.mp4,fake
|
567 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id00476_wavtolip.mp4,fake
|
568 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id00944_wavtolip.mp4,fake
|
569 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id01597_wavtolip.mp4,fake
|
570 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id01691_wavtolip.mp4,fake
|
571 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id04727_wavtolip.mp4,fake
|
572 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id00478_wavtolip.mp4,fake
|
573 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id01610_wavtolip.mp4,fake
|
574 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id01856_wavtolip.mp4,fake
|
575 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id02005_wavtolip.mp4,fake
|
576 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id02342_wavtolip.mp4,fake
|
577 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id00166_wavtolip.mp4,fake
|
578 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id00391_wavtolip.mp4,fake
|
579 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id00830_wavtolip.mp4,fake
|
580 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id01170_wavtolip.mp4,fake
|
581 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id02268_wavtolip.mp4,fake
|
582 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id00478_wavtolip.mp4,fake
|
583 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id00987_wavtolip.mp4,fake
|
584 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id01076_wavtolip.mp4,fake
|
585 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id01207_wavtolip.mp4,fake
|
586 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id02494_wavtolip.mp4,fake
|
587 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01544_wavtolip.mp4,fake
|
588 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01598_wavtolip.mp4,fake
|
589 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01717_wavtolip.mp4,fake
|
590 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01835_wavtolip.mp4,fake
|
591 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id02296_wavtolip.mp4,fake
|
592 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id00475_wavtolip.mp4,fake
|
593 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id01528_wavtolip.mp4,fake
|
594 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id01691_wavtolip.mp4,fake
|
595 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id02040_wavtolip.mp4,fake
|
596 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id02268_wavtolip.mp4,fake
|
597 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id00391_wavtolip.mp4,fake
|
598 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01392_wavtolip.mp4,fake
|
599 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01528_wavtolip.mp4,fake
|
600 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01610_wavtolip.mp4,fake
|
601 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01972_wavtolip.mp4,fake
|
602 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id00478_wavtolip.mp4,fake
|
603 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id00761_wavtolip.mp4,fake
|
604 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id01036_wavtolip.mp4,fake
|
605 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id01528_wavtolip.mp4,fake
|
606 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id01717_wavtolip.mp4,fake
|
607 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01170_wavtolip.mp4,fake
|
608 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01610_wavtolip.mp4,fake
|
609 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01972_wavtolip.mp4,fake
|
610 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01995_wavtolip.mp4,fake
|
611 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id02494_wavtolip.mp4,fake
|
612 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id00478_wavtolip.mp4,fake
|
613 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id01207_wavtolip.mp4,fake
|
614 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id01544_wavtolip.mp4,fake
|
615 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id01920_wavtolip.mp4,fake
|
616 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00944\00135_id01528_SBAS9Kcb8QY_faceswap_id01179_wavtolip.mp4,fake
|
617 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id01236_wavtolip.mp4,fake
|
618 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id01528_wavtolip.mp4,fake
|
619 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id01691_wavtolip.mp4,fake
|
620 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id02040_wavtolip.mp4,fake
|
621 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id02342_wavtolip.mp4,fake
|
622 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id00475_wavtolip.mp4,fake
|
623 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id01171_wavtolip.mp4,fake
|
624 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id01530_wavtolip.mp4,fake
|
625 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id01597_wavtolip.mp4,fake
|
626 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id00391_wavtolip.mp4,fake
|
627 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id00781_wavtolip.mp4,fake
|
628 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id01530_wavtolip.mp4,fake
|
629 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id02040_wavtolip.mp4,fake
|
630 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id02342_wavtolip.mp4,fake
|
631 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id00478_wavtolip.mp4,fake
|
632 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id01597_wavtolip.mp4,fake
|
633 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id01637_wavtolip.mp4,fake
|
634 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id01856_wavtolip.mp4,fake
|
635 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id00475_wavtolip.mp4,fake
|
636 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id00476_wavtolip.mp4,fake
|
637 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id01779_wavtolip.mp4,fake
|
638 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id01835_wavtolip.mp4,fake
|
639 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id02051_wavtolip.mp4,fake
|
640 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01528_wavtolip.mp4,fake
|
641 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01779_wavtolip.mp4,fake
|
642 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01835_wavtolip.mp4,fake
|
643 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01972_wavtolip.mp4,fake
|
644 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id02316_wavtolip.mp4,fake
|
645 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id00366_wavtolip.mp4,fake
|
646 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id00701_wavtolip.mp4,fake
|
647 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id01530_wavtolip.mp4,fake
|
648 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id01597_wavtolip.mp4,fake
|
649 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id04727_wavtolip.mp4,fake
|
650 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id00366_wavtolip.mp4,fake
|
651 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id00830_wavtolip.mp4,fake
|
652 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id01076_wavtolip.mp4,fake
|
653 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id01691_wavtolip.mp4,fake
|
654 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id01779_wavtolip.mp4,fake
|
655 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id00166_wavtolip.mp4,fake
|
656 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id00475_wavtolip.mp4,fake
|
657 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id00478_wavtolip.mp4,fake
|
658 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id01207_wavtolip.mp4,fake
|
659 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id01521_wavtolip.mp4,fake
|
660 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id00830_wavtolip.mp4,fake
|
661 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id01392_wavtolip.mp4,fake
|
662 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id01610_wavtolip.mp4,fake
|
663 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id01933_wavtolip.mp4,fake
|
664 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id02040_wavtolip.mp4,fake
|
665 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id00173_wavtolip.mp4,fake
|
666 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id00475_wavtolip.mp4,fake
|
667 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id00987_wavtolip.mp4,fake
|
668 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id01392_wavtolip.mp4,fake
|
669 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id01717_wavtolip.mp4,fake
|
670 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id00701_wavtolip.mp4,fake
|
671 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id01076_wavtolip.mp4,fake
|
672 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id01610_wavtolip.mp4,fake
|
673 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id02005_wavtolip.mp4,fake
|
674 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id02494_wavtolip.mp4,fake
|
675 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id00166_wavtolip.mp4,fake
|
676 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id00173_wavtolip.mp4,fake
|
677 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id00830_wavtolip.mp4,fake
|
678 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id01530_wavtolip.mp4,fake
|
679 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id02268_wavtolip.mp4,fake
|
680 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_0_id00076_wavtolip.mp4,fake
|
681 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id01171_wavtolip.mp4,fake
|
682 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id01392_wavtolip.mp4,fake
|
683 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id01544_wavtolip.mp4,fake
|
684 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id02005_wavtolip.mp4,fake
|
685 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id02494_wavtolip.mp4,fake
|
686 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id00987_wavtolip.mp4,fake
|
687 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id01236_wavtolip.mp4,fake
|
688 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id01995_wavtolip.mp4,fake
|
689 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id02040_wavtolip.mp4,fake
|
690 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id02494_wavtolip.mp4,fake
|
691 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id00761_wavtolip.mp4,fake
|
692 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id00781_wavtolip.mp4,fake
|
693 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id01528_wavtolip.mp4,fake
|
694 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id01920_wavtolip.mp4,fake
|
695 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id02268_wavtolip.mp4,fake
|
696 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id01637_wavtolip.mp4,fake
|
697 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id01691_wavtolip.mp4,fake
|
698 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id02005_wavtolip.mp4,fake
|
699 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id02051_wavtolip.mp4,fake
|
700 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id02316_wavtolip.mp4,fake
|
701 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id00475_wavtolip.mp4,fake
|
702 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id00761_wavtolip.mp4,fake
|
703 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id01392_wavtolip.mp4,fake
|
704 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id02040_wavtolip.mp4,fake
|
705 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id02051_wavtolip.mp4,fake
|
706 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id01598_wavtolip.mp4,fake
|
707 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id01610_wavtolip.mp4,fake
|
708 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id01920_wavtolip.mp4,fake
|
709 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id02296_wavtolip.mp4,fake
|
710 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id02342_wavtolip.mp4,fake
|
711 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id00701_wavtolip.mp4,fake
|
712 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id00761_wavtolip.mp4,fake
|
713 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id00944_wavtolip.mp4,fake
|
714 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id01392_wavtolip.mp4,fake
|
715 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id01452_wavtolip.mp4,fake
|
716 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id00830_wavtolip.mp4,fake
|
717 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id01236_wavtolip.mp4,fake
|
718 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id02040_wavtolip.mp4,fake
|
719 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id02268_wavtolip.mp4,fake
|
720 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01170_wavtolip.mp4,fake
|
721 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01392_wavtolip.mp4,fake
|
722 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01691_wavtolip.mp4,fake
|
723 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01779_wavtolip.mp4,fake
|
724 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id04727_wavtolip.mp4,fake
|
725 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id00173_wavtolip.mp4,fake
|
726 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id00478_wavtolip.mp4,fake
|
727 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id00701_wavtolip.mp4,fake
|
728 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id01170_wavtolip.mp4,fake
|
729 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id01779_wavtolip.mp4,fake
|
730 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id00391_wavtolip.mp4,fake
|
731 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id00518_wavtolip.mp4,fake
|
732 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id01170_wavtolip.mp4,fake
|
733 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id02051_wavtolip.mp4,fake
|
734 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id02494_wavtolip.mp4,fake
|
735 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01207_wavtolip.mp4,fake
|
736 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01392_wavtolip.mp4,fake
|
737 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01530_wavtolip.mp4,fake
|
738 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01610_wavtolip.mp4,fake
|
739 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id02051_wavtolip.mp4,fake
|
740 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id00476_wavtolip.mp4,fake
|
741 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id00944_wavtolip.mp4,fake
|
742 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id01597_wavtolip.mp4,fake
|
743 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id01779_wavtolip.mp4,fake
|
744 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id02316_wavtolip.mp4,fake
|
745 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id00475_wavtolip.mp4,fake
|
746 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id00518_wavtolip.mp4,fake
|
747 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id00987_wavtolip.mp4,fake
|
748 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id01995_wavtolip.mp4,fake
|
749 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id02494_wavtolip.mp4,fake
|
750 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01171_wavtolip.mp4,fake
|
751 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01179_wavtolip.mp4,fake
|
752 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01207_wavtolip.mp4,fake
|
753 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01597_wavtolip.mp4,fake
|
754 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01717_wavtolip.mp4,fake
|
755 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id00366_wavtolip.mp4,fake
|
756 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id01392_wavtolip.mp4,fake
|
757 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id01544_wavtolip.mp4,fake
|
758 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id01779_wavtolip.mp4,fake
|
759 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id02005_wavtolip.mp4,fake
|
760 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id00478_wavtolip.mp4,fake
|
761 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id00518_wavtolip.mp4,fake
|
762 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id01207_wavtolip.mp4,fake
|
763 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id01544_wavtolip.mp4,fake
|
764 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id01717_wavtolip.mp4,fake
|
765 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id00761_wavtolip.mp4,fake
|
766 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id01076_wavtolip.mp4,fake
|
767 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id01835_wavtolip.mp4,fake
|
768 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id02051_wavtolip.mp4,fake
|
769 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id02296_wavtolip.mp4,fake
|
770 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id00478_wavtolip.mp4,fake
|
771 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01170_wavtolip.mp4,fake
|
772 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01452_wavtolip.mp4,fake
|
773 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01610_wavtolip.mp4,fake
|
774 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01920_wavtolip.mp4,fake
|
775 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id01076_wavtolip.mp4,fake
|
776 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id01598_wavtolip.mp4,fake
|
777 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id01835_wavtolip.mp4,fake
|
778 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id02316_wavtolip.mp4,fake
|
779 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id02342_wavtolip.mp4,fake
|
780 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id00475_wavtolip.mp4,fake
|
781 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id01995_wavtolip.mp4,fake
|
782 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id02005_wavtolip.mp4,fake
|
783 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id02296_wavtolip.mp4,fake
|
784 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id04727_wavtolip.mp4,fake
|
785 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id02586_wavtolip.mp4,fake
|
786 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id03569_wavtolip.mp4,fake
|
787 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id03658_wavtolip.mp4,fake
|
788 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id04376_wavtolip.mp4,fake
|
789 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id05251_wavtolip.mp4,fake
|
790 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id00568_wavtolip.mp4,fake
|
791 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id03658_wavtolip.mp4,fake
|
792 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id04736_wavtolip.mp4,fake
|
793 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id05106_wavtolip.mp4,fake
|
794 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id05252_wavtolip.mp4,fake
|
795 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id00371_wavtolip.mp4,fake
|
796 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id00460_wavtolip.mp4,fake
|
797 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id01178_wavtolip.mp4,fake
|
798 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id02721_wavtolip.mp4,fake
|
799 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id02808_wavtolip.mp4,fake
|
800 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id00577_wavtolip.mp4,fake
|
801 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id00707_wavtolip.mp4,fake
|
802 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id01661_wavtolip.mp4,fake
|
803 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id03747_wavtolip.mp4,fake
|
804 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id05252_wavtolip.mp4,fake
|
805 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id01532_wavtolip.mp4,fake
|
806 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id01907_wavtolip.mp4,fake
|
807 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id04055_wavtolip.mp4,fake
|
808 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id04376_wavtolip.mp4,fake
|
809 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id04736_wavtolip.mp4,fake
|
810 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id00371_wavtolip.mp4,fake
|
811 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id01661_wavtolip.mp4,fake
|
812 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id01838_wavtolip.mp4,fake
|
813 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id04055_wavtolip.mp4,fake
|
814 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id05252_wavtolip.mp4,fake
|
815 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id02824_wavtolip.mp4,fake
|
816 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04376_wavtolip.mp4,fake
|
817 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04547_wavtolip.mp4,fake
|
818 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04689_wavtolip.mp4,fake
|
819 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04820_wavtolip.mp4,fake
|
820 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id01178_wavtolip.mp4,fake
|
821 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id03103_wavtolip.mp4,fake
|
822 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id04705_wavtolip.mp4,fake
|
823 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id04736_wavtolip.mp4,fake
|
824 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id05106_wavtolip.mp4,fake
|
825 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id00371_wavtolip.mp4,fake
|
826 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id00832_wavtolip.mp4,fake
|
827 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id01178_wavtolip.mp4,fake
|
828 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id04055_wavtolip.mp4,fake
|
829 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id04540_wavtolip.mp4,fake
|
830 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id00371_wavtolip.mp4,fake
|
831 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id01838_wavtolip.mp4,fake
|
832 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id02071_wavtolip.mp4,fake
|
833 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id02721_wavtolip.mp4,fake
|
834 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id04437_wavtolip.mp4,fake
|
835 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id00220_wavtolip.mp4,fake
|
836 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id00371_wavtolip.mp4,fake
|
837 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id02508_wavtolip.mp4,fake
|
838 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id02824_wavtolip.mp4,fake
|
839 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id05231_wavtolip.mp4,fake
|
840 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id00577_wavtolip.mp4,fake
|
841 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id00832_wavtolip.mp4,fake
|
842 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id01178_wavtolip.mp4,fake
|
843 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id02586_wavtolip.mp4,fake
|
844 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id04055_wavtolip.mp4,fake
|
845 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id02948_wavtolip.mp4,fake
|
846 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id03569_wavtolip.mp4,fake
|
847 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id03713_wavtolip.mp4,fake
|
848 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id04705_wavtolip.mp4,fake
|
849 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id05235_wavtolip.mp4,fake
|
850 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id00568_wavtolip.mp4,fake
|
851 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id00829_wavtolip.mp4,fake
|
852 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id01838_wavtolip.mp4,fake
|
853 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id02071_wavtolip.mp4,fake
|
854 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id05106_wavtolip.mp4,fake
|
855 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id00371_wavtolip.mp4,fake
|
856 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id03656_wavtolip.mp4,fake
|
857 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id04437_wavtolip.mp4,fake
|
858 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id05251_wavtolip.mp4,fake
|
859 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id05252_wavtolip.mp4,fake
|
860 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id00371_wavtolip.mp4,fake
|
861 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id01838_wavtolip.mp4,fake
|
862 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id02508_wavtolip.mp4,fake
|
863 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id04055_wavtolip.mp4,fake
|
864 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id04705_wavtolip.mp4,fake
|
865 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id01532_wavtolip.mp4,fake
|
866 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id01661_wavtolip.mp4,fake
|
867 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id04540_wavtolip.mp4,fake
|
868 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id04705_wavtolip.mp4,fake
|
869 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id05980_wavtolip.mp4,fake
|
870 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id00460_wavtolip.mp4,fake
|
871 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id04245_wavtolip.mp4,fake
|
872 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id04374_wavtolip.mp4,fake
|
873 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id04820_wavtolip.mp4,fake
|
874 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id05106_wavtolip.mp4,fake
|
875 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id00592_wavtolip.mp4,fake
|
876 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id02838_wavtolip.mp4,fake
|
877 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id03713_wavtolip.mp4,fake
|
878 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id04689_wavtolip.mp4,fake
|
879 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id04736_wavtolip.mp4,fake
|
880 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id00371_wavtolip.mp4,fake
|
881 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id02824_wavtolip.mp4,fake
|
882 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id02838_wavtolip.mp4,fake
|
883 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id02948_wavtolip.mp4,fake
|
884 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id04820_wavtolip.mp4,fake
|
885 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id00371_wavtolip.mp4,fake
|
886 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id00832_wavtolip.mp4,fake
|
887 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id02301_wavtolip.mp4,fake
|
888 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id05235_wavtolip.mp4,fake
|
889 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id05252_wavtolip.mp4,fake
|
890 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id01783_wavtolip.mp4,fake
|
891 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id02617_wavtolip.mp4,fake
|
892 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id04245_wavtolip.mp4,fake
|
893 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id05106_wavtolip.mp4,fake
|
894 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id05231_wavtolip.mp4,fake
|
895 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id00460_wavtolip.mp4,fake
|
896 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id01178_wavtolip.mp4,fake
|
897 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id02721_wavtolip.mp4,fake
|
898 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id04374_wavtolip.mp4,fake
|
899 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id05251_wavtolip.mp4,fake
|
900 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id00220_wavtolip.mp4,fake
|
901 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id01178_wavtolip.mp4,fake
|
902 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id02586_wavtolip.mp4,fake
|
903 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id04705_wavtolip.mp4,fake
|
904 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id05252_wavtolip.mp4,fake
|
905 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id00359_wavtolip.mp4,fake
|
906 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id00460_wavtolip.mp4,fake
|
907 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id00592_wavtolip.mp4,fake
|
908 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id02721_wavtolip.mp4,fake
|
909 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id02838_wavtolip.mp4,fake
|
910 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id00371_wavtolip.mp4,fake
|
911 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id00592_wavtolip.mp4,fake
|
912 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id01532_wavtolip.mp4,fake
|
913 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id02301_wavtolip.mp4,fake
|
914 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id04705_wavtolip.mp4,fake
|
915 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id00220_wavtolip.mp4,fake
|
916 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id02301_wavtolip.mp4,fake
|
917 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id03713_wavtolip.mp4,fake
|
918 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id04245_wavtolip.mp4,fake
|
919 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id04705_wavtolip.mp4,fake
|
920 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id00220_wavtolip.mp4,fake
|
921 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id00832_wavtolip.mp4,fake
|
922 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id01178_wavtolip.mp4,fake
|
923 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id01532_wavtolip.mp4,fake
|
924 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id04245_wavtolip.mp4,fake
|
925 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id01661_wavtolip.mp4,fake
|
926 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id04055_wavtolip.mp4,fake
|
927 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id04374_wavtolip.mp4,fake
|
928 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id04547_wavtolip.mp4,fake
|
929 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id05235_wavtolip.mp4,fake
|
930 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id00577_wavtolip.mp4,fake
|
931 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id03569_wavtolip.mp4,fake
|
932 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id04705_wavtolip.mp4,fake
|
933 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id05251_wavtolip.mp4,fake
|
934 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id05980_wavtolip.mp4,fake
|
935 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id00371_wavtolip.mp4,fake
|
936 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id01532_wavtolip.mp4,fake
|
937 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id04689_wavtolip.mp4,fake
|
938 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id05231_wavtolip.mp4,fake
|
939 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id00371_wavtolip.mp4,fake
|
940 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id00460_wavtolip.mp4,fake
|
941 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id00577_wavtolip.mp4,fake
|
942 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id01838_wavtolip.mp4,fake
|
943 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id02721_wavtolip.mp4,fake
|
944 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id00832_wavtolip.mp4,fake
|
945 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id02617_wavtolip.mp4,fake
|
946 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id02808_wavtolip.mp4,fake
|
947 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id02824_wavtolip.mp4,fake
|
948 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id05251_wavtolip.mp4,fake
|
949 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id00460_wavtolip.mp4,fake
|
950 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id01838_wavtolip.mp4,fake
|
951 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id02948_wavtolip.mp4,fake
|
952 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id03747_wavtolip.mp4,fake
|
953 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id04736_wavtolip.mp4,fake
|
954 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id00592_wavtolip.mp4,fake
|
955 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id01907_wavtolip.mp4,fake
|
956 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id02721_wavtolip.mp4,fake
|
957 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id04245_wavtolip.mp4,fake
|
958 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id00568_wavtolip.mp4,fake
|
959 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id01783_wavtolip.mp4,fake
|
960 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id02721_wavtolip.mp4,fake
|
961 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id04376_wavtolip.mp4,fake
|
962 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id04689_wavtolip.mp4,fake
|
963 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id00460_wavtolip.mp4,fake
|
964 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id01907_wavtolip.mp4,fake
|
965 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id03747_wavtolip.mp4,fake
|
966 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id04939_wavtolip.mp4,fake
|
967 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id05235_wavtolip.mp4,fake
|
968 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id00371_wavtolip.mp4,fake
|
969 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id00592_wavtolip.mp4,fake
|
970 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id01661_wavtolip.mp4,fake
|
971 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id04437_wavtolip.mp4,fake
|
972 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id05231_wavtolip.mp4,fake
|
973 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id00371_wavtolip.mp4,fake
|
974 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id00592_wavtolip.mp4,fake
|
975 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id01907_wavtolip.mp4,fake
|
976 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id02301_wavtolip.mp4,fake
|
977 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id02721_wavtolip.mp4,fake
|
978 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id01783_wavtolip.mp4,fake
|
979 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id02808_wavtolip.mp4,fake
|
980 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id04055_wavtolip.mp4,fake
|
981 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id04736_wavtolip.mp4,fake
|
982 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id05251_wavtolip.mp4,fake
|
983 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id00568_wavtolip.mp4,fake
|
984 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id03569_wavtolip.mp4,fake
|
985 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id03658_wavtolip.mp4,fake
|
986 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id04437_wavtolip.mp4,fake
|
987 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id00220_wavtolip.mp4,fake
|
988 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id00832_wavtolip.mp4,fake
|
989 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id02824_wavtolip.mp4,fake
|
990 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id04376_wavtolip.mp4,fake
|
991 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id04437_wavtolip.mp4,fake
|
992 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id00243_wavtolip.mp4,fake
|
993 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id00777_wavtolip.mp4,fake
|
994 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id00945_wavtolip.mp4,fake
|
995 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id01239_wavtolip.mp4,fake
|
996 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id03678_wavtolip.mp4,fake
|
997 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id00018_wavtolip.mp4,fake
|
998 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id00049_wavtolip.mp4,fake
|
999 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id00696_wavtolip.mp4,fake
|
1000 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id01048_wavtolip.mp4,fake
|
1001 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id01201_wavtolip.mp4,fake
|
datasets/train/.gitkeep
ADDED
File without changes
|
datasets/val/.gitkeep
ADDED
File without changes
|
images/fake_image.jpg
ADDED
images/lady.jpg
ADDED
inference.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import torch.nn as nn
|
7 |
+
from models.TMC import ETMC
|
8 |
+
from models import image
|
9 |
+
|
10 |
+
#Set random seed for reproducibility.
|
11 |
+
torch.manual_seed(42)
|
12 |
+
|
13 |
+
|
14 |
+
# Define the audio_args dictionary
|
15 |
+
audio_args = {
|
16 |
+
'nb_samp': 64600,
|
17 |
+
'first_conv': 1024,
|
18 |
+
'in_channels': 1,
|
19 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
20 |
+
'blocks': [2, 4],
|
21 |
+
'nb_fc_node': 1024,
|
22 |
+
'gru_node': 1024,
|
23 |
+
'nb_gru_layer': 3,
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def get_args(parser):
|
28 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
29 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
30 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
31 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
32 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
33 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
34 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
35 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
36 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
37 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
38 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
39 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
40 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
41 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
42 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
43 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
44 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
45 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
46 |
+
parser.add_argument("--patience", type=int, default=20)
|
47 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
48 |
+
parser.add_argument("--seed", type=int, default=1)
|
49 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
50 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
51 |
+
parser.add_argument("--device", type=str, default='cpu')
|
52 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
53 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
54 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
55 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
56 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
57 |
+
|
58 |
+
for key, value in audio_args.items():
|
59 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
60 |
+
|
61 |
+
def model_summary(args):
|
62 |
+
'''Prints the model summary.'''
|
63 |
+
model = ETMC(args)
|
64 |
+
|
65 |
+
for name, layer in model.named_modules():
|
66 |
+
print(name, layer)
|
67 |
+
|
68 |
+
def load_multimodal_model(args):
|
69 |
+
'''Load multimodal model'''
|
70 |
+
model = ETMC(args)
|
71 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
72 |
+
model.load_state_dict(ckpt,strict = False)
|
73 |
+
model.eval()
|
74 |
+
return model
|
75 |
+
|
76 |
+
def load_img_modality_model(args):
|
77 |
+
'''Loads image modality model.'''
|
78 |
+
rgb_encoder = image.ImageEncoder(args)
|
79 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
80 |
+
rgb_encoder.load_state_dict(ckpt,strict = False)
|
81 |
+
rgb_encoder.eval()
|
82 |
+
return rgb_encoder
|
83 |
+
|
84 |
+
def load_spec_modality_model(args):
|
85 |
+
spec_encoder = image.RawNet(args)
|
86 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
87 |
+
spec_encoder.load_state_dict(ckpt,strict = False)
|
88 |
+
spec_encoder.eval()
|
89 |
+
return spec_encoder
|
90 |
+
|
91 |
+
|
92 |
+
#Load models.
|
93 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
94 |
+
get_args(parser)
|
95 |
+
args, remaining_args = parser.parse_known_args()
|
96 |
+
assert remaining_args == [], remaining_args
|
97 |
+
|
98 |
+
multimodal = load_multimodal_model(args)
|
99 |
+
spec_model = load_spec_modality_model(args)
|
100 |
+
img_model = load_img_modality_model(args)
|
101 |
+
|
102 |
+
|
103 |
+
def preprocess_img(face):
|
104 |
+
face = face / 255
|
105 |
+
face = cv2.resize(face, (256, 256))
|
106 |
+
face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
107 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
108 |
+
return face_pt
|
109 |
+
|
110 |
+
def preprocess_audio(audio_file):
|
111 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
112 |
+
return audio_pt
|
113 |
+
|
114 |
+
def deepfakes_spec_predict(input_audio):
|
115 |
+
x, _ = input_audio
|
116 |
+
audio = preprocess_audio(x)
|
117 |
+
spec_grads = spec_model.forward(audio)
|
118 |
+
multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
119 |
+
|
120 |
+
out = nn.Softmax()(multimodal_grads)
|
121 |
+
max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
122 |
+
max_value = out[max] #Actual value of the tensor.
|
123 |
+
max_value = np.argmax(out[max].detach().numpy())
|
124 |
+
|
125 |
+
if max_value > 0.5:
|
126 |
+
preds = round(100 - (max_value*100), 3)
|
127 |
+
text2 = f"The audio is REAL."
|
128 |
+
|
129 |
+
else:
|
130 |
+
preds = round(max_value*100, 3)
|
131 |
+
text2 = f"The audio is FAKE."
|
132 |
+
|
133 |
+
return text2
|
134 |
+
|
135 |
+
def deepfakes_image_predict(input_image):
|
136 |
+
face = preprocess_img(input_image)
|
137 |
+
|
138 |
+
img_grads = img_model.forward(face)
|
139 |
+
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
140 |
+
|
141 |
+
out = nn.Softmax()(multimodal_grads)
|
142 |
+
max = torch.argmax(out, dim=-1) #Index of the max value in the tensor.
|
143 |
+
max = max.cpu().detach().numpy()
|
144 |
+
max_value = out[max] #Actual value of the tensor.
|
145 |
+
max_value = np.argmax(out[max].detach().numpy())
|
146 |
+
|
147 |
+
if max_value > 0.5:
|
148 |
+
preds = round(100 - (max_value*100), 3)
|
149 |
+
text2 = f"The image is REAL."
|
150 |
+
|
151 |
+
else:
|
152 |
+
preds = round(max_value*100, 3)
|
153 |
+
text2 = f"The image is FAKE."
|
154 |
+
|
155 |
+
return text2
|
156 |
+
|
157 |
+
|
158 |
+
def preprocess_video(input_video, n_frames = 5):
|
159 |
+
v_cap = cv2.VideoCapture(input_video)
|
160 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
161 |
+
|
162 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
163 |
+
if n_frames is None:
|
164 |
+
sample = np.arange(0, v_len)
|
165 |
+
else:
|
166 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
167 |
+
|
168 |
+
#Loop through frames.
|
169 |
+
frames = []
|
170 |
+
for j in range(v_len):
|
171 |
+
success = v_cap.grab()
|
172 |
+
if j in sample:
|
173 |
+
# Load frame
|
174 |
+
success, frame = v_cap.retrieve()
|
175 |
+
if not success:
|
176 |
+
continue
|
177 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
178 |
+
frame = preprocess_img(frame)
|
179 |
+
frames.append(frame)
|
180 |
+
v_cap.release()
|
181 |
+
return frames
|
182 |
+
|
183 |
+
|
184 |
+
def deepfakes_video_predict(input_video):
|
185 |
+
'''Perform inference on a video.'''
|
186 |
+
video_frames = preprocess_video(input_video)
|
187 |
+
|
188 |
+
real_grads = []
|
189 |
+
fake_grads = []
|
190 |
+
|
191 |
+
for face in video_frames:
|
192 |
+
img_grads = img_model.forward(face)
|
193 |
+
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
194 |
+
|
195 |
+
out = nn.Softmax()(multimodal_grads)
|
196 |
+
real_grads.append(out.cpu().detach().numpy()[0])
|
197 |
+
print(f"Video out tensor shape is: {out.shape}, {out}")
|
198 |
+
|
199 |
+
fake_grads.append(out.cpu().detach().numpy()[0])
|
200 |
+
|
201 |
+
real_grads_mean = np.mean(real_grads)
|
202 |
+
fake_grads_mean = np.mean(fake_grads)
|
203 |
+
|
204 |
+
if real_grads_mean > fake_grads_mean:
|
205 |
+
res = round(real_grads_mean * 100, 3)
|
206 |
+
text = f"The video is REAL."
|
207 |
+
else:
|
208 |
+
res = round(100 - (real_grads_mean * 100), 3)
|
209 |
+
text = f"The video is FAKE."
|
210 |
+
return text
|
211 |
+
|
inference_2.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import onnx
|
4 |
+
import torch
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
import torch.nn as nn
|
8 |
+
from models.TMC import ETMC
|
9 |
+
from models import image
|
10 |
+
|
11 |
+
from onnx2pytorch import ConvertModel
|
12 |
+
|
13 |
+
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
14 |
+
pytorch_model = ConvertModel(onnx_model)
|
15 |
+
|
16 |
+
#Set random seed for reproducibility.
|
17 |
+
torch.manual_seed(42)
|
18 |
+
|
19 |
+
|
20 |
+
# Define the audio_args dictionary
|
21 |
+
audio_args = {
|
22 |
+
'nb_samp': 64600,
|
23 |
+
'first_conv': 1024,
|
24 |
+
'in_channels': 1,
|
25 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
26 |
+
'blocks': [2, 4],
|
27 |
+
'nb_fc_node': 1024,
|
28 |
+
'gru_node': 1024,
|
29 |
+
'nb_gru_layer': 3,
|
30 |
+
'nb_classes': 2
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
def get_args(parser):
|
35 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
36 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
37 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
38 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
39 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
40 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
41 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
42 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
43 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
44 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
45 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
46 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
47 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
48 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
49 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
50 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
51 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
52 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
53 |
+
parser.add_argument("--patience", type=int, default=20)
|
54 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
55 |
+
parser.add_argument("--seed", type=int, default=1)
|
56 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
57 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
58 |
+
parser.add_argument("--device", type=str, default='cpu')
|
59 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
60 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
61 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
62 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
63 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
64 |
+
|
65 |
+
for key, value in audio_args.items():
|
66 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
67 |
+
|
68 |
+
def model_summary(args):
|
69 |
+
'''Prints the model summary.'''
|
70 |
+
model = ETMC(args)
|
71 |
+
|
72 |
+
for name, layer in model.named_modules():
|
73 |
+
print(name, layer)
|
74 |
+
|
75 |
+
def load_multimodal_model(args):
|
76 |
+
'''Load multimodal model'''
|
77 |
+
model = ETMC(args)
|
78 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
79 |
+
model.load_state_dict(ckpt, strict = True)
|
80 |
+
model.eval()
|
81 |
+
return model
|
82 |
+
|
83 |
+
def load_img_modality_model(args):
|
84 |
+
'''Loads image modality model.'''
|
85 |
+
rgb_encoder = pytorch_model
|
86 |
+
|
87 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
88 |
+
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
|
89 |
+
rgb_encoder.eval()
|
90 |
+
return rgb_encoder
|
91 |
+
|
92 |
+
def load_spec_modality_model(args):
|
93 |
+
spec_encoder = image.RawNet(args)
|
94 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
95 |
+
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
|
96 |
+
spec_encoder.eval()
|
97 |
+
return spec_encoder
|
98 |
+
|
99 |
+
|
100 |
+
#Load models.
|
101 |
+
parser = argparse.ArgumentParser(description="Inference models")
|
102 |
+
get_args(parser)
|
103 |
+
args, remaining_args = parser.parse_known_args()
|
104 |
+
assert remaining_args == [], remaining_args
|
105 |
+
|
106 |
+
spec_model = load_spec_modality_model(args)
|
107 |
+
|
108 |
+
img_model = load_img_modality_model(args)
|
109 |
+
|
110 |
+
|
111 |
+
def preprocess_img(face):
|
112 |
+
face = face / 255
|
113 |
+
face = cv2.resize(face, (256, 256))
|
114 |
+
# face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
115 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
116 |
+
return face_pt
|
117 |
+
|
118 |
+
def preprocess_audio(audio_file):
|
119 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
120 |
+
return audio_pt
|
121 |
+
|
122 |
+
def deepfakes_spec_predict(input_audio):
|
123 |
+
x, _ = input_audio
|
124 |
+
audio = preprocess_audio(x)
|
125 |
+
spec_grads = spec_model.forward(audio)
|
126 |
+
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
|
127 |
+
|
128 |
+
# multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
129 |
+
|
130 |
+
# out = nn.Softmax()(multimodal_grads)
|
131 |
+
# max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
132 |
+
# max_value = out[max] #Actual value of the tensor.
|
133 |
+
max_value = np.argmax(spec_grads_inv)
|
134 |
+
|
135 |
+
if max_value > 0.5:
|
136 |
+
preds = round(100 - (max_value*100), 3)
|
137 |
+
text2 = f"The audio is REAL."
|
138 |
+
|
139 |
+
else:
|
140 |
+
preds = round(max_value*100, 3)
|
141 |
+
text2 = f"The audio is FAKE."
|
142 |
+
|
143 |
+
return text2
|
144 |
+
|
145 |
+
def deepfakes_image_predict(input_image):
|
146 |
+
face = preprocess_img(input_image)
|
147 |
+
print(f"Face shape is: {face.shape}")
|
148 |
+
img_grads = img_model.forward(face)
|
149 |
+
img_grads = img_grads.cpu().detach().numpy()
|
150 |
+
img_grads_np = np.squeeze(img_grads)
|
151 |
+
|
152 |
+
if img_grads_np[0] > 0.5:
|
153 |
+
preds = round(img_grads_np[0] * 100, 3)
|
154 |
+
text2 = f"The image is REAL. \nConfidence score is: {preds}"
|
155 |
+
|
156 |
+
else:
|
157 |
+
preds = round(img_grads_np[1] * 100, 3)
|
158 |
+
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
|
159 |
+
|
160 |
+
return text2
|
161 |
+
|
162 |
+
|
163 |
+
def preprocess_video(input_video, n_frames = 3):
|
164 |
+
v_cap = cv2.VideoCapture(input_video)
|
165 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
166 |
+
|
167 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
168 |
+
if n_frames is None:
|
169 |
+
sample = np.arange(0, v_len)
|
170 |
+
else:
|
171 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
172 |
+
|
173 |
+
#Loop through frames.
|
174 |
+
frames = []
|
175 |
+
for j in range(v_len):
|
176 |
+
success = v_cap.grab()
|
177 |
+
if j in sample:
|
178 |
+
# Load frame
|
179 |
+
success, frame = v_cap.retrieve()
|
180 |
+
if not success:
|
181 |
+
continue
|
182 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
183 |
+
frame = preprocess_img(frame)
|
184 |
+
frames.append(frame)
|
185 |
+
v_cap.release()
|
186 |
+
return frames
|
187 |
+
|
188 |
+
|
189 |
+
def deepfakes_video_predict(input_video):
|
190 |
+
'''Perform inference on a video.'''
|
191 |
+
video_frames = preprocess_video(input_video)
|
192 |
+
real_faces_list = []
|
193 |
+
fake_faces_list = []
|
194 |
+
|
195 |
+
for face in video_frames:
|
196 |
+
# face = preprocess_img(face)
|
197 |
+
|
198 |
+
img_grads = img_model.forward(face)
|
199 |
+
img_grads = img_grads.cpu().detach().numpy()
|
200 |
+
img_grads_np = np.squeeze(img_grads)
|
201 |
+
real_faces_list.append(img_grads_np[0])
|
202 |
+
fake_faces_list.append(img_grads_np[1])
|
203 |
+
|
204 |
+
real_faces_mean = np.mean(real_faces_list)
|
205 |
+
fake_faces_mean = np.mean(fake_faces_list)
|
206 |
+
|
207 |
+
if real_faces_mean > 0.5:
|
208 |
+
preds = round(real_faces_mean * 100, 3)
|
209 |
+
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
|
210 |
+
|
211 |
+
else:
|
212 |
+
preds = round(fake_faces_mean * 100, 3)
|
213 |
+
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
|
214 |
+
|
215 |
+
return text2
|
216 |
+
|
main.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from tqdm import tqdm
|
4 |
+
import torch.nn as nn
|
5 |
+
import tensorflow as tf
|
6 |
+
import torch.optim as optim
|
7 |
+
|
8 |
+
from models.TMC import ETMC, ce_loss
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from data.dfdt_dataset import FakeAVCelebDatasetTrain, FakeAVCelebDatasetVal
|
11 |
+
|
12 |
+
|
13 |
+
from utils.utils import *
|
14 |
+
from utils.logger import create_logger
|
15 |
+
from sklearn.metrics import accuracy_score
|
16 |
+
from torch.utils.tensorboard import SummaryWriter
|
17 |
+
|
18 |
+
# Define the audio_args dictionary
|
19 |
+
audio_args = {
|
20 |
+
'nb_samp': 64600,
|
21 |
+
'first_conv': 1024,
|
22 |
+
'in_channels': 1,
|
23 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
24 |
+
'blocks': [2, 4],
|
25 |
+
'nb_fc_node': 1024,
|
26 |
+
'gru_node': 1024,
|
27 |
+
'nb_gru_layer': 3,
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
def get_args(parser):
|
32 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
33 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
34 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
35 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
36 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
37 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
38 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
39 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
40 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
41 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
42 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
43 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
44 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
45 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
46 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
47 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
48 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
49 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
50 |
+
parser.add_argument("--patience", type=int, default=20)
|
51 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
52 |
+
parser.add_argument("--seed", type=int, default=1)
|
53 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
54 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
55 |
+
parser.add_argument("--device", type=str, default='cpu')
|
56 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
57 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = True)
|
58 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
59 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = True)
|
60 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
61 |
+
|
62 |
+
for key, value in audio_args.items():
|
63 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
64 |
+
|
65 |
+
def get_optimizer(model, args):
|
66 |
+
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
67 |
+
return optimizer
|
68 |
+
|
69 |
+
|
70 |
+
def get_scheduler(optimizer, args):
|
71 |
+
return optim.lr_scheduler.ReduceLROnPlateau(
|
72 |
+
optimizer, "max", patience=args.lr_patience, verbose=True, factor=args.lr_factor
|
73 |
+
)
|
74 |
+
|
75 |
+
def model_forward(i_epoch, model, args, ce_loss, batch):
|
76 |
+
rgb, spec, tgt = batch['video_reshaped'], batch['spectrogram'], batch['label_map']
|
77 |
+
rgb_pt = torch.Tensor(rgb.numpy())
|
78 |
+
spec = spec.numpy()
|
79 |
+
spec_pt = torch.Tensor(spec)
|
80 |
+
tgt_pt = torch.Tensor(tgt.numpy())
|
81 |
+
|
82 |
+
if torch.cuda.is_available():
|
83 |
+
rgb_pt, spec_pt, tgt_pt = rgb_pt.cuda(), spec_pt.cuda(), tgt_pt.cuda()
|
84 |
+
|
85 |
+
# depth_alpha, rgb_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
|
86 |
+
|
87 |
+
# loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
88 |
+
# ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
89 |
+
# ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
|
90 |
+
# return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
|
91 |
+
|
92 |
+
depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
|
93 |
+
|
94 |
+
loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
95 |
+
ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
96 |
+
ce_loss(tgt_pt, pseudo_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
97 |
+
ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
|
98 |
+
return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def model_eval(i_epoch, data, model, args, criterion):
|
103 |
+
model.eval()
|
104 |
+
with torch.no_grad():
|
105 |
+
losses, depth_preds, rgb_preds, depthrgb_preds, tgts = [], [], [], [], []
|
106 |
+
for batch in tqdm(data):
|
107 |
+
loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt = model_forward(i_epoch, model, args, criterion, batch)
|
108 |
+
losses.append(loss.item())
|
109 |
+
|
110 |
+
depth_pred = depth_alpha.argmax(dim=1).cpu().detach().numpy()
|
111 |
+
rgb_pred = rgb_alpha.argmax(dim=1).cpu().detach().numpy()
|
112 |
+
depth_rgb_pred = depth_rgb_alpha.argmax(dim=1).cpu().detach().numpy()
|
113 |
+
|
114 |
+
depth_preds.append(depth_pred)
|
115 |
+
rgb_preds.append(rgb_pred)
|
116 |
+
depthrgb_preds.append(depth_rgb_pred)
|
117 |
+
tgt = tgt.cpu().detach().numpy()
|
118 |
+
tgts.append(tgt)
|
119 |
+
|
120 |
+
metrics = {"loss": np.mean(losses)}
|
121 |
+
print(f"Mean loss is: {metrics['loss']}")
|
122 |
+
|
123 |
+
tgts = [l for sl in tgts for l in sl]
|
124 |
+
depth_preds = [l for sl in depth_preds for l in sl]
|
125 |
+
rgb_preds = [l for sl in rgb_preds for l in sl]
|
126 |
+
depthrgb_preds = [l for sl in depthrgb_preds for l in sl]
|
127 |
+
metrics["spec_acc"] = accuracy_score(tgts, depth_preds)
|
128 |
+
metrics["rgb_acc"] = accuracy_score(tgts, rgb_preds)
|
129 |
+
metrics["specrgb_acc"] = accuracy_score(tgts, depthrgb_preds)
|
130 |
+
return metrics
|
131 |
+
|
132 |
+
def write_weight_histograms(writer, step, model):
|
133 |
+
for idx, item in enumerate(model.named_parameters()):
|
134 |
+
name = item[0]
|
135 |
+
weights = item[1].data
|
136 |
+
if weights.size(dim = 0) > 2:
|
137 |
+
try:
|
138 |
+
writer.add_histogram(name, weights, idx)
|
139 |
+
except ValueError as e:
|
140 |
+
continue
|
141 |
+
|
142 |
+
writer = SummaryWriter()
|
143 |
+
|
144 |
+
def train(args):
|
145 |
+
set_seed(args.seed)
|
146 |
+
args.savedir = os.path.join(args.savedir, args.name)
|
147 |
+
os.makedirs(args.savedir, exist_ok=True)
|
148 |
+
|
149 |
+
train_ds = FakeAVCelebDatasetTrain(args)
|
150 |
+
train_ds = train_ds.load_features_from_tfrec()
|
151 |
+
|
152 |
+
val_ds = FakeAVCelebDatasetVal(args)
|
153 |
+
val_ds = val_ds.load_features_from_tfrec()
|
154 |
+
|
155 |
+
model = ETMC(args)
|
156 |
+
optimizer = get_optimizer(model, args)
|
157 |
+
scheduler = get_scheduler(optimizer, args)
|
158 |
+
logger = create_logger("%s/logfile.log" % args.savedir, args)
|
159 |
+
if torch.cuda.is_available():
|
160 |
+
model.cuda()
|
161 |
+
|
162 |
+
torch.save(args, os.path.join(args.savedir, "checkpoint.pt"))
|
163 |
+
start_epoch, global_step, n_no_improve, best_metric = 0, 0, 0, -np.inf
|
164 |
+
|
165 |
+
for i_epoch in range(start_epoch, args.max_epochs):
|
166 |
+
train_losses = []
|
167 |
+
model.train()
|
168 |
+
optimizer.zero_grad()
|
169 |
+
|
170 |
+
for index, batch in tqdm(enumerate(train_ds)):
|
171 |
+
loss, depth_out, rgb_out, depthrgb, tgt = model_forward(i_epoch, model, args, ce_loss, batch)
|
172 |
+
if args.gradient_accumulation_steps > 1:
|
173 |
+
loss = loss / args.gradient_accumulation_steps
|
174 |
+
|
175 |
+
train_losses.append(loss.item())
|
176 |
+
loss.backward()
|
177 |
+
global_step += 1
|
178 |
+
if global_step % args.gradient_accumulation_steps == 0:
|
179 |
+
optimizer.step()
|
180 |
+
optimizer.zero_grad()
|
181 |
+
|
182 |
+
#Write weight histograms to Tensorboard.
|
183 |
+
write_weight_histograms(writer, i_epoch, model)
|
184 |
+
|
185 |
+
model.eval()
|
186 |
+
metrics = model_eval(
|
187 |
+
np.inf, val_ds, model, args, ce_loss
|
188 |
+
)
|
189 |
+
logger.info("Train Loss: {:.4f}".format(np.mean(train_losses)))
|
190 |
+
log_metrics("val", metrics, logger)
|
191 |
+
logger.info(
|
192 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
|
193 |
+
"val", metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"], metrics["specrgb_acc"]
|
194 |
+
)
|
195 |
+
)
|
196 |
+
tuning_metric = metrics["specrgb_acc"]
|
197 |
+
|
198 |
+
scheduler.step(tuning_metric)
|
199 |
+
is_improvement = tuning_metric > best_metric
|
200 |
+
if is_improvement:
|
201 |
+
best_metric = tuning_metric
|
202 |
+
n_no_improve = 0
|
203 |
+
else:
|
204 |
+
n_no_improve += 1
|
205 |
+
|
206 |
+
save_checkpoint(
|
207 |
+
{
|
208 |
+
"epoch": i_epoch + 1,
|
209 |
+
"optimizer": optimizer.state_dict(),
|
210 |
+
"scheduler": scheduler.state_dict(),
|
211 |
+
"n_no_improve": n_no_improve,
|
212 |
+
"best_metric": best_metric,
|
213 |
+
},
|
214 |
+
is_improvement,
|
215 |
+
args.savedir,
|
216 |
+
)
|
217 |
+
|
218 |
+
if n_no_improve >= args.patience:
|
219 |
+
logger.info("No improvement. Breaking out of loop.")
|
220 |
+
break
|
221 |
+
writer.close()
|
222 |
+
# load_checkpoint(model, os.path.join(args.savedir, "model_best.pt"))
|
223 |
+
model.eval()
|
224 |
+
test_metrics = model_eval(
|
225 |
+
np.inf, val_ds, model, args, ce_loss
|
226 |
+
)
|
227 |
+
logger.info(
|
228 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
|
229 |
+
"Test", test_metrics["loss"], test_metrics["spec_acc"], test_metrics["rgb_acc"],
|
230 |
+
test_metrics["depthrgb_acc"]
|
231 |
+
)
|
232 |
+
)
|
233 |
+
log_metrics(f"Test", test_metrics, logger)
|
234 |
+
|
235 |
+
|
236 |
+
def cli_main():
|
237 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
238 |
+
get_args(parser)
|
239 |
+
args, remaining_args = parser.parse_known_args()
|
240 |
+
assert remaining_args == [], remaining_args
|
241 |
+
train(args)
|
242 |
+
|
243 |
+
|
244 |
+
if __name__ == "__main__":
|
245 |
+
import warnings
|
246 |
+
warnings.filterwarnings("ignore")
|
247 |
+
cli_main()
|
models/TMC.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from models import image
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
# loss function
|
8 |
+
def KL(alpha, c):
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
beta = torch.ones((1, c)).cuda()
|
11 |
+
else:
|
12 |
+
beta = torch.ones((1, c))
|
13 |
+
S_alpha = torch.sum(alpha, dim=1, keepdim=True)
|
14 |
+
S_beta = torch.sum(beta, dim=1, keepdim=True)
|
15 |
+
lnB = torch.lgamma(S_alpha) - torch.sum(torch.lgamma(alpha), dim=1, keepdim=True)
|
16 |
+
lnB_uni = torch.sum(torch.lgamma(beta), dim=1, keepdim=True) - torch.lgamma(S_beta)
|
17 |
+
dg0 = torch.digamma(S_alpha)
|
18 |
+
dg1 = torch.digamma(alpha)
|
19 |
+
kl = torch.sum((alpha - beta) * (dg1 - dg0), dim=1, keepdim=True) + lnB + lnB_uni
|
20 |
+
return kl
|
21 |
+
|
22 |
+
def ce_loss(p, alpha, c, global_step, annealing_step):
|
23 |
+
S = torch.sum(alpha, dim=1, keepdim=True)
|
24 |
+
E = alpha - 1
|
25 |
+
label = p
|
26 |
+
A = torch.sum(label * (torch.digamma(S) - torch.digamma(alpha)), dim=1, keepdim=True)
|
27 |
+
|
28 |
+
annealing_coef = min(1, global_step / annealing_step)
|
29 |
+
alp = E * (1 - label) + 1
|
30 |
+
B = annealing_coef * KL(alp, c)
|
31 |
+
return torch.mean((A + B))
|
32 |
+
|
33 |
+
|
34 |
+
class TMC(nn.Module):
|
35 |
+
def __init__(self, args):
|
36 |
+
super(TMC, self).__init__()
|
37 |
+
self.args = args
|
38 |
+
self.rgbenc = image.ImageEncoder(args)
|
39 |
+
self.specenc = image.RawNet(args)
|
40 |
+
|
41 |
+
spec_last_size = args.img_hidden_sz * 1
|
42 |
+
rgb_last_size = args.img_hidden_sz * args.num_image_embeds
|
43 |
+
self.spec_depth = nn.ModuleList()
|
44 |
+
self.clf_rgb = nn.ModuleList()
|
45 |
+
|
46 |
+
for hidden in args.hidden:
|
47 |
+
self.spec_depth.append(nn.Linear(spec_last_size, hidden))
|
48 |
+
self.spec_depth.append(nn.ReLU())
|
49 |
+
self.spec_depth.append(nn.Dropout(args.dropout))
|
50 |
+
spec_last_size = hidden
|
51 |
+
self.spec_depth.append(nn.Linear(spec_last_size, args.n_classes))
|
52 |
+
|
53 |
+
for hidden in args.hidden:
|
54 |
+
self.clf_rgb.append(nn.Linear(rgb_last_size, hidden))
|
55 |
+
self.clf_rgb.append(nn.ReLU())
|
56 |
+
self.clf_rgb.append(nn.Dropout(args.dropout))
|
57 |
+
rgb_last_size = hidden
|
58 |
+
self.clf_rgb.append(nn.Linear(rgb_last_size, args.n_classes))
|
59 |
+
|
60 |
+
def DS_Combin_two(self, alpha1, alpha2):
|
61 |
+
# Calculate the merger of two DS evidences
|
62 |
+
alpha = dict()
|
63 |
+
alpha[0], alpha[1] = alpha1, alpha2
|
64 |
+
b, S, E, u = dict(), dict(), dict(), dict()
|
65 |
+
for v in range(2):
|
66 |
+
S[v] = torch.sum(alpha[v], dim=1, keepdim=True)
|
67 |
+
E[v] = alpha[v] - 1
|
68 |
+
b[v] = E[v] / (S[v].expand(E[v].shape))
|
69 |
+
u[v] = self.args.n_classes / S[v]
|
70 |
+
|
71 |
+
# b^0 @ b^(0+1)
|
72 |
+
bb = torch.bmm(b[0].view(-1, self.args.n_classes, 1), b[1].view(-1, 1, self.args.n_classes))
|
73 |
+
# b^0 * u^1
|
74 |
+
uv1_expand = u[1].expand(b[0].shape)
|
75 |
+
bu = torch.mul(b[0], uv1_expand)
|
76 |
+
# b^1 * u^0
|
77 |
+
uv_expand = u[0].expand(b[0].shape)
|
78 |
+
ub = torch.mul(b[1], uv_expand)
|
79 |
+
# calculate K
|
80 |
+
bb_sum = torch.sum(bb, dim=(1, 2), out=None)
|
81 |
+
bb_diag = torch.diagonal(bb, dim1=-2, dim2=-1).sum(-1)
|
82 |
+
# bb_diag1 = torch.diag(torch.mm(b[v], torch.transpose(b[v+1], 0, 1)))
|
83 |
+
K = bb_sum - bb_diag
|
84 |
+
|
85 |
+
# calculate b^a
|
86 |
+
b_a = (torch.mul(b[0], b[1]) + bu + ub) / ((1 - K).view(-1, 1).expand(b[0].shape))
|
87 |
+
# calculate u^a
|
88 |
+
u_a = torch.mul(u[0], u[1]) / ((1 - K).view(-1, 1).expand(u[0].shape))
|
89 |
+
# test = torch.sum(b_a, dim = 1, keepdim = True) + u_a #Verify programming errors
|
90 |
+
|
91 |
+
# calculate new S
|
92 |
+
S_a = self.args.n_classes / u_a
|
93 |
+
# calculate new e_k
|
94 |
+
e_a = torch.mul(b_a, S_a.expand(b_a.shape))
|
95 |
+
alpha_a = e_a + 1
|
96 |
+
return alpha_a
|
97 |
+
|
98 |
+
def forward(self, rgb, spec):
|
99 |
+
spec = self.specenc(spec)
|
100 |
+
spec = torch.flatten(spec, start_dim=1)
|
101 |
+
|
102 |
+
rgb = self.rgbenc(rgb)
|
103 |
+
rgb = torch.flatten(rgb, start_dim=1)
|
104 |
+
|
105 |
+
spec_out = spec
|
106 |
+
|
107 |
+
for layer in self.spec_depth:
|
108 |
+
spec_out = layer(spec_out)
|
109 |
+
|
110 |
+
rgb_out = rgb
|
111 |
+
|
112 |
+
for layer in self.clf_rgb:
|
113 |
+
rgb_out = layer(rgb_out)
|
114 |
+
|
115 |
+
spec_evidence, rgb_evidence = F.softplus(spec_out), F.softplus(rgb_out)
|
116 |
+
spec_alpha, rgb_alpha = spec_evidence+1, rgb_evidence+1
|
117 |
+
spec_rgb_alpha = self.DS_Combin_two(spec_alpha, rgb_alpha)
|
118 |
+
return spec_alpha, rgb_alpha, spec_rgb_alpha
|
119 |
+
|
120 |
+
|
121 |
+
class ETMC(TMC):
|
122 |
+
def __init__(self, args):
|
123 |
+
super(ETMC, self).__init__(args)
|
124 |
+
last_size = args.img_hidden_sz * args.num_image_embeds + args.img_hidden_sz * args.num_image_embeds
|
125 |
+
self.clf = nn.ModuleList()
|
126 |
+
for hidden in args.hidden:
|
127 |
+
self.clf.append(nn.Linear(last_size, hidden))
|
128 |
+
self.clf.append(nn.ReLU())
|
129 |
+
self.clf.append(nn.Dropout(args.dropout))
|
130 |
+
last_size = hidden
|
131 |
+
self.clf.append(nn.Linear(last_size, args.n_classes))
|
132 |
+
|
133 |
+
def forward(self, rgb, spec):
|
134 |
+
spec = self.specenc(spec)
|
135 |
+
spec = torch.flatten(spec, start_dim=1)
|
136 |
+
|
137 |
+
rgb = self.rgbenc(rgb)
|
138 |
+
rgb = torch.flatten(rgb, start_dim=1)
|
139 |
+
|
140 |
+
spec_out = spec
|
141 |
+
for layer in self.spec_depth:
|
142 |
+
spec_out = layer(spec_out)
|
143 |
+
|
144 |
+
rgb_out = rgb
|
145 |
+
for layer in self.clf_rgb:
|
146 |
+
rgb_out = layer(rgb_out)
|
147 |
+
|
148 |
+
pseudo_out = torch.cat([rgb, spec], -1)
|
149 |
+
for layer in self.clf:
|
150 |
+
pseudo_out = layer(pseudo_out)
|
151 |
+
|
152 |
+
depth_evidence, rgb_evidence, pseudo_evidence = F.softplus(spec_out), F.softplus(rgb_out), F.softplus(pseudo_out)
|
153 |
+
depth_alpha, rgb_alpha, pseudo_alpha = depth_evidence+1, rgb_evidence+1, pseudo_evidence+1
|
154 |
+
depth_rgb_alpha = self.DS_Combin_two(self.DS_Combin_two(depth_alpha, rgb_alpha), pseudo_alpha)
|
155 |
+
return depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha
|
156 |
+
|
models/__pycache__/TMC.cpython-39.pyc
ADDED
Binary file (4.35 kB). View file
|
|
models/__pycache__/classifiers.cpython-39.pyc
ADDED
Binary file (5.68 kB). View file
|
|
models/__pycache__/image.cpython-39.pyc
ADDED
Binary file (5.58 kB). View file
|
|
models/__pycache__/rawnet.cpython-39.pyc
ADDED
Binary file (9.67 kB). View file
|
|
models/classifiers.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from timm.models.efficientnet import tf_efficientnet_b4_ns, tf_efficientnet_b3_ns, \
|
6 |
+
tf_efficientnet_b5_ns, tf_efficientnet_b2_ns, tf_efficientnet_b6_ns, tf_efficientnet_b7_ns
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn.modules.dropout import Dropout
|
9 |
+
from torch.nn.modules.linear import Linear
|
10 |
+
from torch.nn.modules.pooling import AdaptiveAvgPool2d
|
11 |
+
|
12 |
+
encoder_params = {
|
13 |
+
"tf_efficientnet_b3_ns": {
|
14 |
+
"features": 1536,
|
15 |
+
"init_op": partial(tf_efficientnet_b3_ns, pretrained=True, drop_path_rate=0.2)
|
16 |
+
},
|
17 |
+
"tf_efficientnet_b2_ns": {
|
18 |
+
"features": 1408,
|
19 |
+
"init_op": partial(tf_efficientnet_b2_ns, pretrained=False, drop_path_rate=0.2)
|
20 |
+
},
|
21 |
+
"tf_efficientnet_b4_ns": {
|
22 |
+
"features": 1792,
|
23 |
+
"init_op": partial(tf_efficientnet_b4_ns, pretrained=True, drop_path_rate=0.5)
|
24 |
+
},
|
25 |
+
"tf_efficientnet_b5_ns": {
|
26 |
+
"features": 2048,
|
27 |
+
"init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.2)
|
28 |
+
},
|
29 |
+
"tf_efficientnet_b4_ns_03d": {
|
30 |
+
"features": 1792,
|
31 |
+
"init_op": partial(tf_efficientnet_b4_ns, pretrained=True, drop_path_rate=0.3)
|
32 |
+
},
|
33 |
+
"tf_efficientnet_b5_ns_03d": {
|
34 |
+
"features": 2048,
|
35 |
+
"init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.3)
|
36 |
+
},
|
37 |
+
"tf_efficientnet_b5_ns_04d": {
|
38 |
+
"features": 2048,
|
39 |
+
"init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.4)
|
40 |
+
},
|
41 |
+
"tf_efficientnet_b6_ns": {
|
42 |
+
"features": 2304,
|
43 |
+
"init_op": partial(tf_efficientnet_b6_ns, pretrained=True, drop_path_rate=0.2)
|
44 |
+
},
|
45 |
+
"tf_efficientnet_b7_ns": {
|
46 |
+
"features": 2560,
|
47 |
+
"init_op": partial(tf_efficientnet_b7_ns, pretrained=False, drop_path_rate=0.2)
|
48 |
+
},
|
49 |
+
"tf_efficientnet_b6_ns_04d": {
|
50 |
+
"features": 2304,
|
51 |
+
"init_op": partial(tf_efficientnet_b6_ns, pretrained=True, drop_path_rate=0.4)
|
52 |
+
},
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def setup_srm_weights(input_channels: int = 3) -> torch.Tensor:
|
57 |
+
"""Creates the SRM kernels for noise analysis."""
|
58 |
+
# note: values taken from Zhou et al., "Learning Rich Features for Image Manipulation Detection", CVPR2018
|
59 |
+
srm_kernel = torch.from_numpy(np.array([
|
60 |
+
[ # srm 1/2 horiz
|
61 |
+
[0., 0., 0., 0., 0.], # noqa: E241,E201
|
62 |
+
[0., 0., 0., 0., 0.], # noqa: E241,E201
|
63 |
+
[0., 1., -2., 1., 0.], # noqa: E241,E201
|
64 |
+
[0., 0., 0., 0., 0.], # noqa: E241,E201
|
65 |
+
[0., 0., 0., 0., 0.], # noqa: E241,E201
|
66 |
+
], [ # srm 1/4
|
67 |
+
[0., 0., 0., 0., 0.], # noqa: E241,E201
|
68 |
+
[0., -1., 2., -1., 0.], # noqa: E241,E201
|
69 |
+
[0., 2., -4., 2., 0.], # noqa: E241,E201
|
70 |
+
[0., -1., 2., -1., 0.], # noqa: E241,E201
|
71 |
+
[0., 0., 0., 0., 0.], # noqa: E241,E201
|
72 |
+
], [ # srm 1/12
|
73 |
+
[-1., 2., -2., 2., -1.], # noqa: E241,E201
|
74 |
+
[2., -6., 8., -6., 2.], # noqa: E241,E201
|
75 |
+
[-2., 8., -12., 8., -2.], # noqa: E241,E201
|
76 |
+
[2., -6., 8., -6., 2.], # noqa: E241,E201
|
77 |
+
[-1., 2., -2., 2., -1.], # noqa: E241,E201
|
78 |
+
]
|
79 |
+
])).float()
|
80 |
+
srm_kernel[0] /= 2
|
81 |
+
srm_kernel[1] /= 4
|
82 |
+
srm_kernel[2] /= 12
|
83 |
+
return srm_kernel.view(3, 1, 5, 5).repeat(1, input_channels, 1, 1)
|
84 |
+
|
85 |
+
|
86 |
+
def setup_srm_layer(input_channels: int = 3) -> torch.nn.Module:
|
87 |
+
"""Creates a SRM convolution layer for noise analysis."""
|
88 |
+
weights = setup_srm_weights(input_channels)
|
89 |
+
conv = torch.nn.Conv2d(input_channels, out_channels=3, kernel_size=5, stride=1, padding=2, bias=False)
|
90 |
+
with torch.no_grad():
|
91 |
+
conv.weight = torch.nn.Parameter(weights, requires_grad=False)
|
92 |
+
return conv
|
93 |
+
|
94 |
+
|
95 |
+
class DeepFakeClassifierSRM(nn.Module):
|
96 |
+
def __init__(self, encoder, dropout_rate=0.5) -> None:
|
97 |
+
super().__init__()
|
98 |
+
self.encoder = encoder_params[encoder]["init_op"]()
|
99 |
+
self.avg_pool = AdaptiveAvgPool2d((1, 1))
|
100 |
+
self.srm_conv = setup_srm_layer(3)
|
101 |
+
self.dropout = Dropout(dropout_rate)
|
102 |
+
self.fc = Linear(encoder_params[encoder]["features"], 1)
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
noise = self.srm_conv(x)
|
106 |
+
x = self.encoder.forward_features(noise)
|
107 |
+
x = self.avg_pool(x).flatten(1)
|
108 |
+
x = self.dropout(x)
|
109 |
+
x = self.fc(x)
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class GlobalWeightedAvgPool2d(nn.Module):
|
114 |
+
"""
|
115 |
+
Global Weighted Average Pooling from paper "Global Weighted Average
|
116 |
+
Pooling Bridges Pixel-level Localization and Image-level Classification"
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, features: int, flatten=False):
|
120 |
+
super().__init__()
|
121 |
+
self.conv = nn.Conv2d(features, 1, kernel_size=1, bias=True)
|
122 |
+
self.flatten = flatten
|
123 |
+
|
124 |
+
def fscore(self, x):
|
125 |
+
m = self.conv(x)
|
126 |
+
m = m.sigmoid().exp()
|
127 |
+
return m
|
128 |
+
|
129 |
+
def norm(self, x: torch.Tensor):
|
130 |
+
return x / x.sum(dim=[2, 3], keepdim=True)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
input_x = x
|
134 |
+
x = self.fscore(x)
|
135 |
+
x = self.norm(x)
|
136 |
+
x = x * input_x
|
137 |
+
x = x.sum(dim=[2, 3], keepdim=not self.flatten)
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class DeepFakeClassifier(nn.Module):
|
142 |
+
def __init__(self, encoder, dropout_rate=0.0) -> None:
|
143 |
+
super().__init__()
|
144 |
+
self.encoder = encoder_params[encoder]["init_op"]()
|
145 |
+
self.avg_pool = AdaptiveAvgPool2d((1, 1))
|
146 |
+
self.dropout = Dropout(dropout_rate)
|
147 |
+
self.fc = Linear(encoder_params[encoder]["features"], 1)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
x = self.encoder.forward_features(x)
|
151 |
+
x = self.avg_pool(x).flatten(1)
|
152 |
+
x = self.dropout(x)
|
153 |
+
x = self.fc(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
class DeepFakeClassifierGWAP(nn.Module):
|
160 |
+
def __init__(self, encoder, dropout_rate=0.5) -> None:
|
161 |
+
super().__init__()
|
162 |
+
self.encoder = encoder_params[encoder]["init_op"]()
|
163 |
+
self.avg_pool = GlobalWeightedAvgPool2d(encoder_params[encoder]["features"])
|
164 |
+
self.dropout = Dropout(dropout_rate)
|
165 |
+
self.fc = Linear(encoder_params[encoder]["features"], 1)
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
x = self.encoder.forward_features(x)
|
169 |
+
x = self.avg_pool(x).flatten(1)
|
170 |
+
x = self.dropout(x)
|
171 |
+
x = self.fc(x)
|
172 |
+
return x
|
models/image.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import wget
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from models.rawnet import SincConv, Residual_block
|
9 |
+
from models.classifiers import DeepFakeClassifier
|
10 |
+
|
11 |
+
class ImageEncoder(nn.Module):
|
12 |
+
def __init__(self, args):
|
13 |
+
super(ImageEncoder, self).__init__()
|
14 |
+
self.device = args.device
|
15 |
+
self.args = args
|
16 |
+
self.flatten = nn.Flatten()
|
17 |
+
self.sigmoid = nn.Sigmoid()
|
18 |
+
# self.fc = nn.Linear(in_features=2560, out_features = 2)
|
19 |
+
self.pretrained_image_encoder = args.pretrained_image_encoder
|
20 |
+
self.freeze_image_encoder = args.freeze_image_encoder
|
21 |
+
|
22 |
+
if self.pretrained_image_encoder == False:
|
23 |
+
self.model = DeepFakeClassifier(encoder = "tf_efficientnet_b7_ns").to(self.device)
|
24 |
+
|
25 |
+
else:
|
26 |
+
self.pretrained_ckpt = torch.load('pretrained\\final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23', map_location = torch.device(self.args.device))
|
27 |
+
self.state_dict = self.pretrained_ckpt.get("state_dict", self.pretrained_ckpt)
|
28 |
+
|
29 |
+
self.model = DeepFakeClassifier(encoder = "tf_efficientnet_b7_ns").to(self.device)
|
30 |
+
print("Loading pretrained image encoder...")
|
31 |
+
self.model.load_state_dict({re.sub("^module.", "", k): v for k, v in self.state_dict.items()}, strict=True)
|
32 |
+
print("Loaded pretrained image encoder.")
|
33 |
+
|
34 |
+
if self.freeze_image_encoder == True:
|
35 |
+
for idx, param in self.model.named_parameters():
|
36 |
+
param.requires_grad = False
|
37 |
+
|
38 |
+
# self.model.fc = nn.Identity()
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
x = self.model(x)
|
42 |
+
out = self.sigmoid(x)
|
43 |
+
# x = self.flatten(x)
|
44 |
+
# out = self.fc(x)
|
45 |
+
return out
|
46 |
+
|
47 |
+
|
48 |
+
class RawNet(nn.Module):
|
49 |
+
def __init__(self, args):
|
50 |
+
super(RawNet, self).__init__()
|
51 |
+
|
52 |
+
self.device=args.device
|
53 |
+
self.filts = [20, [20, 20], [20, 128], [128, 128]]
|
54 |
+
|
55 |
+
self.Sinc_conv=SincConv(device=self.device,
|
56 |
+
out_channels = self.filts[0],
|
57 |
+
kernel_size = 1024,
|
58 |
+
in_channels = args.in_channels)
|
59 |
+
|
60 |
+
self.first_bn = nn.BatchNorm1d(num_features = self.filts[0])
|
61 |
+
self.selu = nn.SELU(inplace=True)
|
62 |
+
self.block0 = nn.Sequential(Residual_block(nb_filts = self.filts[1], first = True))
|
63 |
+
self.block1 = nn.Sequential(Residual_block(nb_filts = self.filts[1]))
|
64 |
+
self.block2 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
|
65 |
+
self.filts[2][0] = self.filts[2][1]
|
66 |
+
self.block3 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
|
67 |
+
self.block4 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
|
68 |
+
self.block5 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
|
69 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
70 |
+
|
71 |
+
self.fc_attention0 = self._make_attention_fc(in_features = self.filts[1][-1],
|
72 |
+
l_out_features = self.filts[1][-1])
|
73 |
+
self.fc_attention1 = self._make_attention_fc(in_features = self.filts[1][-1],
|
74 |
+
l_out_features = self.filts[1][-1])
|
75 |
+
self.fc_attention2 = self._make_attention_fc(in_features = self.filts[2][-1],
|
76 |
+
l_out_features = self.filts[2][-1])
|
77 |
+
self.fc_attention3 = self._make_attention_fc(in_features = self.filts[2][-1],
|
78 |
+
l_out_features = self.filts[2][-1])
|
79 |
+
self.fc_attention4 = self._make_attention_fc(in_features = self.filts[2][-1],
|
80 |
+
l_out_features = self.filts[2][-1])
|
81 |
+
self.fc_attention5 = self._make_attention_fc(in_features = self.filts[2][-1],
|
82 |
+
l_out_features = self.filts[2][-1])
|
83 |
+
|
84 |
+
self.bn_before_gru = nn.BatchNorm1d(num_features = self.filts[2][-1])
|
85 |
+
self.gru = nn.GRU(input_size = self.filts[2][-1],
|
86 |
+
hidden_size = args.gru_node,
|
87 |
+
num_layers = args.nb_gru_layer,
|
88 |
+
batch_first = True)
|
89 |
+
|
90 |
+
self.fc1_gru = nn.Linear(in_features = args.gru_node,
|
91 |
+
out_features = args.nb_fc_node)
|
92 |
+
|
93 |
+
self.fc2_gru = nn.Linear(in_features = args.nb_fc_node,
|
94 |
+
out_features = args.nb_classes ,bias=True)
|
95 |
+
|
96 |
+
self.sig = nn.Sigmoid()
|
97 |
+
self.logsoftmax = nn.LogSoftmax(dim=1)
|
98 |
+
self.pretrained_audio_encoder = args.pretrained_audio_encoder
|
99 |
+
self.freeze_audio_encoder = args.freeze_audio_encoder
|
100 |
+
|
101 |
+
if self.pretrained_audio_encoder == True:
|
102 |
+
print("Loading pretrained audio encoder")
|
103 |
+
ckpt = torch.load('pretrained\\RawNet.pth', map_location = torch.device(self.device))
|
104 |
+
print("Loaded pretrained audio encoder")
|
105 |
+
self.load_state_dict(ckpt, strict = True)
|
106 |
+
|
107 |
+
if self.freeze_audio_encoder:
|
108 |
+
for param in self.parameters():
|
109 |
+
param.requires_grad = False
|
110 |
+
|
111 |
+
|
112 |
+
def forward(self, x, y = None):
|
113 |
+
|
114 |
+
nb_samp = x.shape[0]
|
115 |
+
len_seq = x.shape[1]
|
116 |
+
x=x.view(nb_samp,1,len_seq)
|
117 |
+
|
118 |
+
x = self.Sinc_conv(x)
|
119 |
+
x = F.max_pool1d(torch.abs(x), 3)
|
120 |
+
x = self.first_bn(x)
|
121 |
+
x = self.selu(x)
|
122 |
+
|
123 |
+
x0 = self.block0(x)
|
124 |
+
y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter])
|
125 |
+
y0 = self.fc_attention0(y0)
|
126 |
+
y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1) # torch.Size([batch, filter, 1])
|
127 |
+
x = x0 * y0 + y0 # (batch, filter, time) x (batch, filter, 1)
|
128 |
+
|
129 |
+
|
130 |
+
x1 = self.block1(x)
|
131 |
+
y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter])
|
132 |
+
y1 = self.fc_attention1(y1)
|
133 |
+
y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1) # torch.Size([batch, filter, 1])
|
134 |
+
x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1)
|
135 |
+
|
136 |
+
x2 = self.block2(x)
|
137 |
+
y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter])
|
138 |
+
y2 = self.fc_attention2(y2)
|
139 |
+
y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1) # torch.Size([batch, filter, 1])
|
140 |
+
x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1)
|
141 |
+
|
142 |
+
x3 = self.block3(x)
|
143 |
+
y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter])
|
144 |
+
y3 = self.fc_attention3(y3)
|
145 |
+
y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1) # torch.Size([batch, filter, 1])
|
146 |
+
x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1)
|
147 |
+
|
148 |
+
x4 = self.block4(x)
|
149 |
+
y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter])
|
150 |
+
y4 = self.fc_attention4(y4)
|
151 |
+
y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1) # torch.Size([batch, filter, 1])
|
152 |
+
x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1)
|
153 |
+
|
154 |
+
x5 = self.block5(x)
|
155 |
+
y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter])
|
156 |
+
y5 = self.fc_attention5(y5)
|
157 |
+
y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1) # torch.Size([batch, filter, 1])
|
158 |
+
x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1)
|
159 |
+
|
160 |
+
x = self.bn_before_gru(x)
|
161 |
+
x = self.selu(x)
|
162 |
+
x = x.permute(0, 2, 1) #(batch, filt, time) >> (batch, time, filt)
|
163 |
+
self.gru.flatten_parameters()
|
164 |
+
x, _ = self.gru(x)
|
165 |
+
x = x[:,-1,:]
|
166 |
+
x = self.fc1_gru(x)
|
167 |
+
x = self.fc2_gru(x)
|
168 |
+
output=self.logsoftmax(x)
|
169 |
+
|
170 |
+
return output
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
def _make_attention_fc(self, in_features, l_out_features):
|
175 |
+
|
176 |
+
l_fc = []
|
177 |
+
|
178 |
+
l_fc.append(nn.Linear(in_features = in_features,
|
179 |
+
out_features = l_out_features))
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
return nn.Sequential(*l_fc)
|
184 |
+
|
185 |
+
|
186 |
+
def _make_layer(self, nb_blocks, nb_filts, first = False):
|
187 |
+
layers = []
|
188 |
+
#def __init__(self, nb_filts, first = False):
|
189 |
+
for i in range(nb_blocks):
|
190 |
+
first = first if i == 0 else False
|
191 |
+
layers.append(Residual_block(nb_filts = nb_filts,
|
192 |
+
first = first))
|
193 |
+
if i == 0: nb_filts[0] = nb_filts[1]
|
194 |
+
|
195 |
+
return nn.Sequential(*layers)
|
models/rawnet.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import Tensor
|
5 |
+
import numpy as np
|
6 |
+
from torch.utils import data
|
7 |
+
from collections import OrderedDict
|
8 |
+
from torch.nn.parameter import Parameter
|
9 |
+
|
10 |
+
|
11 |
+
class SincConv(nn.Module):
|
12 |
+
@staticmethod
|
13 |
+
def to_mel(hz):
|
14 |
+
return 2595 * np.log10(1 + hz / 700)
|
15 |
+
|
16 |
+
@staticmethod
|
17 |
+
def to_hz(mel):
|
18 |
+
return 700 * (10 ** (mel / 2595) - 1)
|
19 |
+
|
20 |
+
|
21 |
+
def __init__(self, device,out_channels, kernel_size,in_channels=1,sample_rate=16000,
|
22 |
+
stride=1, padding=0, dilation=1, bias=False, groups=1):
|
23 |
+
|
24 |
+
super(SincConv,self).__init__()
|
25 |
+
|
26 |
+
if in_channels != 1:
|
27 |
+
|
28 |
+
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
|
29 |
+
raise ValueError(msg)
|
30 |
+
|
31 |
+
self.out_channels = out_channels
|
32 |
+
self.kernel_size = kernel_size
|
33 |
+
self.sample_rate=sample_rate
|
34 |
+
|
35 |
+
# Forcing the filters to be odd (i.e, perfectly symmetrics)
|
36 |
+
if kernel_size%2==0:
|
37 |
+
self.kernel_size=self.kernel_size+1
|
38 |
+
|
39 |
+
self.device=device
|
40 |
+
self.stride = stride
|
41 |
+
self.padding = padding
|
42 |
+
self.dilation = dilation
|
43 |
+
|
44 |
+
if bias:
|
45 |
+
raise ValueError('SincConv does not support bias.')
|
46 |
+
if groups > 1:
|
47 |
+
raise ValueError('SincConv does not support groups.')
|
48 |
+
|
49 |
+
|
50 |
+
# initialize filterbanks using Mel scale
|
51 |
+
NFFT = 512
|
52 |
+
f=int(self.sample_rate/2)*np.linspace(0,1,int(NFFT/2)+1)
|
53 |
+
fmel=self.to_mel(f) # Hz to mel conversion
|
54 |
+
fmelmax=np.max(fmel)
|
55 |
+
fmelmin=np.min(fmel)
|
56 |
+
filbandwidthsmel=np.linspace(fmelmin,fmelmax,self.out_channels+1)
|
57 |
+
filbandwidthsf=self.to_hz(filbandwidthsmel) # Mel to Hz conversion
|
58 |
+
self.mel=filbandwidthsf
|
59 |
+
self.hsupp=torch.arange(-(self.kernel_size-1)/2, (self.kernel_size-1)/2+1)
|
60 |
+
self.band_pass=torch.zeros(self.out_channels,self.kernel_size)
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def forward(self,x):
|
65 |
+
for i in range(len(self.mel)-1):
|
66 |
+
fmin=self.mel[i]
|
67 |
+
fmax=self.mel[i+1]
|
68 |
+
hHigh=(2*fmax/self.sample_rate)*np.sinc(2*fmax*self.hsupp/self.sample_rate)
|
69 |
+
hLow=(2*fmin/self.sample_rate)*np.sinc(2*fmin*self.hsupp/self.sample_rate)
|
70 |
+
hideal=hHigh-hLow
|
71 |
+
|
72 |
+
self.band_pass[i,:]=Tensor(np.hamming(self.kernel_size))*Tensor(hideal)
|
73 |
+
|
74 |
+
band_pass_filter=self.band_pass.to(self.device)
|
75 |
+
|
76 |
+
self.filters = (band_pass_filter).view(self.out_channels, 1, self.kernel_size)
|
77 |
+
|
78 |
+
return F.conv1d(x, self.filters, stride=self.stride,
|
79 |
+
padding=self.padding, dilation=self.dilation,
|
80 |
+
bias=None, groups=1)
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
class Residual_block(nn.Module):
|
85 |
+
def __init__(self, nb_filts, first = False):
|
86 |
+
super(Residual_block, self).__init__()
|
87 |
+
self.first = first
|
88 |
+
|
89 |
+
if not self.first:
|
90 |
+
self.bn1 = nn.BatchNorm1d(num_features = nb_filts[0])
|
91 |
+
|
92 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.3)
|
93 |
+
|
94 |
+
self.conv1 = nn.Conv1d(in_channels = nb_filts[0],
|
95 |
+
out_channels = nb_filts[1],
|
96 |
+
kernel_size = 3,
|
97 |
+
padding = 1,
|
98 |
+
stride = 1)
|
99 |
+
|
100 |
+
self.bn2 = nn.BatchNorm1d(num_features = nb_filts[1])
|
101 |
+
self.conv2 = nn.Conv1d(in_channels = nb_filts[1],
|
102 |
+
out_channels = nb_filts[1],
|
103 |
+
padding = 1,
|
104 |
+
kernel_size = 3,
|
105 |
+
stride = 1)
|
106 |
+
|
107 |
+
if nb_filts[0] != nb_filts[1]:
|
108 |
+
self.downsample = True
|
109 |
+
self.conv_downsample = nn.Conv1d(in_channels = nb_filts[0],
|
110 |
+
out_channels = nb_filts[1],
|
111 |
+
padding = 0,
|
112 |
+
kernel_size = 1,
|
113 |
+
stride = 1)
|
114 |
+
|
115 |
+
else:
|
116 |
+
self.downsample = False
|
117 |
+
self.mp = nn.MaxPool1d(3)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
identity = x
|
121 |
+
if not self.first:
|
122 |
+
out = self.bn1(x)
|
123 |
+
out = self.lrelu(out)
|
124 |
+
else:
|
125 |
+
out = x
|
126 |
+
|
127 |
+
out = self.conv1(x)
|
128 |
+
out = self.bn2(out)
|
129 |
+
out = self.lrelu(out)
|
130 |
+
out = self.conv2(out)
|
131 |
+
|
132 |
+
if self.downsample:
|
133 |
+
identity = self.conv_downsample(identity)
|
134 |
+
|
135 |
+
out += identity
|
136 |
+
out = self.mp(out)
|
137 |
+
return out
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
class RawNet(nn.Module):
|
144 |
+
def __init__(self, d_args, device):
|
145 |
+
super(RawNet, self).__init__()
|
146 |
+
|
147 |
+
|
148 |
+
self.device=device
|
149 |
+
|
150 |
+
self.Sinc_conv=SincConv(device=self.device,
|
151 |
+
out_channels = d_args['filts'][0],
|
152 |
+
kernel_size = d_args['first_conv'],
|
153 |
+
in_channels = d_args['in_channels']
|
154 |
+
)
|
155 |
+
|
156 |
+
self.first_bn = nn.BatchNorm1d(num_features = d_args['filts'][0])
|
157 |
+
self.selu = nn.SELU(inplace=True)
|
158 |
+
self.block0 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1], first = True))
|
159 |
+
self.block1 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1]))
|
160 |
+
self.block2 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
|
161 |
+
d_args['filts'][2][0] = d_args['filts'][2][1]
|
162 |
+
self.block3 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
|
163 |
+
self.block4 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
|
164 |
+
self.block5 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
|
165 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
166 |
+
|
167 |
+
self.fc_attention0 = self._make_attention_fc(in_features = d_args['filts'][1][-1],
|
168 |
+
l_out_features = d_args['filts'][1][-1])
|
169 |
+
self.fc_attention1 = self._make_attention_fc(in_features = d_args['filts'][1][-1],
|
170 |
+
l_out_features = d_args['filts'][1][-1])
|
171 |
+
self.fc_attention2 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
|
172 |
+
l_out_features = d_args['filts'][2][-1])
|
173 |
+
self.fc_attention3 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
|
174 |
+
l_out_features = d_args['filts'][2][-1])
|
175 |
+
self.fc_attention4 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
|
176 |
+
l_out_features = d_args['filts'][2][-1])
|
177 |
+
self.fc_attention5 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
|
178 |
+
l_out_features = d_args['filts'][2][-1])
|
179 |
+
|
180 |
+
self.bn_before_gru = nn.BatchNorm1d(num_features = d_args['filts'][2][-1])
|
181 |
+
self.gru = nn.GRU(input_size = d_args['filts'][2][-1],
|
182 |
+
hidden_size = d_args['gru_node'],
|
183 |
+
num_layers = d_args['nb_gru_layer'],
|
184 |
+
batch_first = True)
|
185 |
+
|
186 |
+
|
187 |
+
self.fc1_gru = nn.Linear(in_features = d_args['gru_node'],
|
188 |
+
out_features = d_args['nb_fc_node'])
|
189 |
+
|
190 |
+
self.fc2_gru = nn.Linear(in_features = d_args['nb_fc_node'],
|
191 |
+
out_features = d_args['nb_classes'],bias=True)
|
192 |
+
|
193 |
+
|
194 |
+
self.sig = nn.Sigmoid()
|
195 |
+
self.logsoftmax = nn.LogSoftmax(dim=1)
|
196 |
+
|
197 |
+
def forward(self, x, y = None):
|
198 |
+
|
199 |
+
|
200 |
+
nb_samp = x.shape[0]
|
201 |
+
len_seq = x.shape[1]
|
202 |
+
x=x.view(nb_samp,1,len_seq)
|
203 |
+
|
204 |
+
x = self.Sinc_conv(x)
|
205 |
+
x = F.max_pool1d(torch.abs(x), 3)
|
206 |
+
x = self.first_bn(x)
|
207 |
+
x = self.selu(x)
|
208 |
+
|
209 |
+
x0 = self.block0(x)
|
210 |
+
y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter])
|
211 |
+
y0 = self.fc_attention0(y0)
|
212 |
+
y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1) # torch.Size([batch, filter, 1])
|
213 |
+
x = x0 * y0 + y0 # (batch, filter, time) x (batch, filter, 1)
|
214 |
+
|
215 |
+
|
216 |
+
x1 = self.block1(x)
|
217 |
+
y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter])
|
218 |
+
y1 = self.fc_attention1(y1)
|
219 |
+
y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1) # torch.Size([batch, filter, 1])
|
220 |
+
x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1)
|
221 |
+
|
222 |
+
x2 = self.block2(x)
|
223 |
+
y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter])
|
224 |
+
y2 = self.fc_attention2(y2)
|
225 |
+
y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1) # torch.Size([batch, filter, 1])
|
226 |
+
x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1)
|
227 |
+
|
228 |
+
x3 = self.block3(x)
|
229 |
+
y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter])
|
230 |
+
y3 = self.fc_attention3(y3)
|
231 |
+
y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1) # torch.Size([batch, filter, 1])
|
232 |
+
x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1)
|
233 |
+
|
234 |
+
x4 = self.block4(x)
|
235 |
+
y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter])
|
236 |
+
y4 = self.fc_attention4(y4)
|
237 |
+
y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1) # torch.Size([batch, filter, 1])
|
238 |
+
x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1)
|
239 |
+
|
240 |
+
x5 = self.block5(x)
|
241 |
+
y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter])
|
242 |
+
y5 = self.fc_attention5(y5)
|
243 |
+
y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1) # torch.Size([batch, filter, 1])
|
244 |
+
x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1)
|
245 |
+
|
246 |
+
x = self.bn_before_gru(x)
|
247 |
+
x = self.selu(x)
|
248 |
+
x = x.permute(0, 2, 1) #(batch, filt, time) >> (batch, time, filt)
|
249 |
+
self.gru.flatten_parameters()
|
250 |
+
x, _ = self.gru(x)
|
251 |
+
x = x[:,-1,:]
|
252 |
+
x = self.fc1_gru(x)
|
253 |
+
x = self.fc2_gru(x)
|
254 |
+
output=self.logsoftmax(x)
|
255 |
+
print(f"Spec output shape: {output.shape}")
|
256 |
+
|
257 |
+
return output
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
def _make_attention_fc(self, in_features, l_out_features):
|
262 |
+
|
263 |
+
l_fc = []
|
264 |
+
|
265 |
+
l_fc.append(nn.Linear(in_features = in_features,
|
266 |
+
out_features = l_out_features))
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
return nn.Sequential(*l_fc)
|
271 |
+
|
272 |
+
|
273 |
+
def _make_layer(self, nb_blocks, nb_filts, first = False):
|
274 |
+
layers = []
|
275 |
+
#def __init__(self, nb_filts, first = False):
|
276 |
+
for i in range(nb_blocks):
|
277 |
+
first = first if i == 0 else False
|
278 |
+
layers.append(Residual_block(nb_filts = nb_filts,
|
279 |
+
first = first))
|
280 |
+
if i == 0: nb_filts[0] = nb_filts[1]
|
281 |
+
|
282 |
+
return nn.Sequential(*layers)
|
283 |
+
|
284 |
+
def summary(self, input_size, batch_size=-1, device="cuda", print_fn = None):
|
285 |
+
if print_fn == None: printfn = print
|
286 |
+
model = self
|
287 |
+
|
288 |
+
def register_hook(module):
|
289 |
+
def hook(module, input, output):
|
290 |
+
class_name = str(module.__class__).split(".")[-1].split("'")[0]
|
291 |
+
module_idx = len(summary)
|
292 |
+
|
293 |
+
m_key = "%s-%i" % (class_name, module_idx + 1)
|
294 |
+
summary[m_key] = OrderedDict()
|
295 |
+
summary[m_key]["input_shape"] = list(input[0].size())
|
296 |
+
summary[m_key]["input_shape"][0] = batch_size
|
297 |
+
if isinstance(output, (list, tuple)):
|
298 |
+
summary[m_key]["output_shape"] = [
|
299 |
+
[-1] + list(o.size())[1:] for o in output
|
300 |
+
]
|
301 |
+
else:
|
302 |
+
summary[m_key]["output_shape"] = list(output.size())
|
303 |
+
if len(summary[m_key]["output_shape"]) != 0:
|
304 |
+
summary[m_key]["output_shape"][0] = batch_size
|
305 |
+
|
306 |
+
params = 0
|
307 |
+
if hasattr(module, "weight") and hasattr(module.weight, "size"):
|
308 |
+
params += torch.prod(torch.LongTensor(list(module.weight.size())))
|
309 |
+
summary[m_key]["trainable"] = module.weight.requires_grad
|
310 |
+
if hasattr(module, "bias") and hasattr(module.bias, "size"):
|
311 |
+
params += torch.prod(torch.LongTensor(list(module.bias.size())))
|
312 |
+
summary[m_key]["nb_params"] = params
|
313 |
+
|
314 |
+
if (
|
315 |
+
not isinstance(module, nn.Sequential)
|
316 |
+
and not isinstance(module, nn.ModuleList)
|
317 |
+
and not (module == model)
|
318 |
+
):
|
319 |
+
hooks.append(module.register_forward_hook(hook))
|
320 |
+
|
321 |
+
device = device.lower()
|
322 |
+
assert device in [
|
323 |
+
"cuda",
|
324 |
+
"cpu",
|
325 |
+
], "Input device is not valid, please specify 'cuda' or 'cpu'"
|
326 |
+
|
327 |
+
if device == "cuda" and torch.cuda.is_available():
|
328 |
+
dtype = torch.cuda.FloatTensor
|
329 |
+
else:
|
330 |
+
dtype = torch.FloatTensor
|
331 |
+
if isinstance(input_size, tuple):
|
332 |
+
input_size = [input_size]
|
333 |
+
x = [torch.rand(2, *in_size).type(dtype) for in_size in input_size]
|
334 |
+
summary = OrderedDict()
|
335 |
+
hooks = []
|
336 |
+
model.apply(register_hook)
|
337 |
+
model(*x)
|
338 |
+
for h in hooks:
|
339 |
+
h.remove()
|
340 |
+
|
341 |
+
print_fn("----------------------------------------------------------------")
|
342 |
+
line_new = "{:>20} {:>25} {:>15}".format("Layer (type)", "Output Shape", "Param #")
|
343 |
+
print_fn(line_new)
|
344 |
+
print_fn("================================================================")
|
345 |
+
total_params = 0
|
346 |
+
total_output = 0
|
347 |
+
trainable_params = 0
|
348 |
+
for layer in summary:
|
349 |
+
# input_shape, output_shape, trainable, nb_params
|
350 |
+
line_new = "{:>20} {:>25} {:>15}".format(
|
351 |
+
layer,
|
352 |
+
str(summary[layer]["output_shape"]),
|
353 |
+
"{0:,}".format(summary[layer]["nb_params"]),
|
354 |
+
)
|
355 |
+
total_params += summary[layer]["nb_params"]
|
356 |
+
total_output += np.prod(summary[layer]["output_shape"])
|
357 |
+
if "trainable" in summary[layer]:
|
358 |
+
if summary[layer]["trainable"] == True:
|
359 |
+
trainable_params += summary[layer]["nb_params"]
|
360 |
+
print_fn(line_new)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wget
|
2 |
+
timm
|
3 |
+
torch
|
4 |
+
tensorflow
|
5 |
+
moviepy
|
6 |
+
librosa
|
7 |
+
ffmpeg
|
8 |
+
albumentations
|
9 |
+
opencv-python
|
10 |
+
torchsummary
|
11 |
+
onnx
|
12 |
+
onnx2pytorch
|
save_ckpts.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnx
|
2 |
+
import torch
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from models.TMC import ETMC
|
7 |
+
from models import image
|
8 |
+
from onnx2pytorch import ConvertModel
|
9 |
+
|
10 |
+
onnx_model = onnx.load('checkpoints\\efficientnet.onnx')
|
11 |
+
pytorch_model = ConvertModel(onnx_model)
|
12 |
+
|
13 |
+
# Define the audio_args dictionary
|
14 |
+
audio_args = {
|
15 |
+
'nb_samp': 64600,
|
16 |
+
'first_conv': 1024,
|
17 |
+
'in_channels': 1,
|
18 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
19 |
+
'blocks': [2, 4],
|
20 |
+
'nb_fc_node': 1024,
|
21 |
+
'gru_node': 1024,
|
22 |
+
'nb_gru_layer': 3,
|
23 |
+
'nb_classes': 2
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def get_args(parser):
|
28 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
29 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
30 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
31 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
32 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
33 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
34 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
35 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
36 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
37 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
38 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
39 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
40 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
41 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
42 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
43 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
44 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
45 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
46 |
+
parser.add_argument("--patience", type=int, default=20)
|
47 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
48 |
+
parser.add_argument("--seed", type=int, default=1)
|
49 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
50 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
51 |
+
parser.add_argument("--device", type=str, default='cpu')
|
52 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
53 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
54 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
55 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
56 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
57 |
+
|
58 |
+
for key, value in audio_args.items():
|
59 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
60 |
+
|
61 |
+
def load_spec_modality_model(args):
|
62 |
+
spec_encoder = image.RawNet(args)
|
63 |
+
ckpt = torch.load('checkpoints\RawNet2.pth', map_location = torch.device('cpu'))
|
64 |
+
spec_encoder.load_state_dict(ckpt, strict = True)
|
65 |
+
spec_encoder.eval()
|
66 |
+
return spec_encoder
|
67 |
+
|
68 |
+
|
69 |
+
#Load models.
|
70 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
71 |
+
get_args(parser)
|
72 |
+
args, remaining_args = parser.parse_known_args()
|
73 |
+
assert remaining_args == [], remaining_args
|
74 |
+
|
75 |
+
spec_model = load_spec_modality_model(args)
|
76 |
+
|
77 |
+
print(f"Image model is: {pytorch_model}")
|
78 |
+
|
79 |
+
print(f"Audio model is: {spec_model}")
|
80 |
+
|
81 |
+
|
82 |
+
PATH = 'checkpoints\\model.pth'
|
83 |
+
|
84 |
+
torch.save({
|
85 |
+
'spec_encoder': spec_model.state_dict(),
|
86 |
+
'rgb_encoder': pytorch_model.state_dict()
|
87 |
+
}, PATH)
|
88 |
+
|
89 |
+
print("Model saved.")
|
utils/__pycache__/logger.cpython-39.pyc
ADDED
Binary file (1.93 kB). View file
|
|
utils/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (1.77 kB). View file
|
|
utils/logger.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
from datetime import timedelta
|
4 |
+
|
5 |
+
|
6 |
+
class LogFormatter:
|
7 |
+
def __init__(self):
|
8 |
+
self.start_time = time.time()
|
9 |
+
|
10 |
+
def format(self, record):
|
11 |
+
elapsed_seconds = round(record.created - self.start_time)
|
12 |
+
|
13 |
+
prefix = "%s - %s - %s" % (
|
14 |
+
record.levelname,
|
15 |
+
time.strftime("%x %X"),
|
16 |
+
timedelta(seconds=elapsed_seconds),
|
17 |
+
)
|
18 |
+
message = record.getMessage()
|
19 |
+
message = message.replace("\n", "\n" + " " * (len(prefix) + 3))
|
20 |
+
return "%s - %s" % (prefix, message)
|
21 |
+
|
22 |
+
|
23 |
+
def create_logger(filepath, args):
|
24 |
+
# create log formatter
|
25 |
+
log_formatter = LogFormatter()
|
26 |
+
|
27 |
+
# create file handler and set level to debug
|
28 |
+
file_handler = logging.FileHandler(filepath, "a")
|
29 |
+
file_handler.setLevel(logging.DEBUG)
|
30 |
+
file_handler.setFormatter(log_formatter)
|
31 |
+
|
32 |
+
# create console handler and set level to info
|
33 |
+
console_handler = logging.StreamHandler()
|
34 |
+
console_handler.setLevel(logging.INFO)
|
35 |
+
console_handler.setFormatter(log_formatter)
|
36 |
+
|
37 |
+
# create logger and set level to debug
|
38 |
+
logger = logging.getLogger()
|
39 |
+
logger.handlers = []
|
40 |
+
logger.setLevel(logging.DEBUG)
|
41 |
+
logger.propagate = False
|
42 |
+
logger.addHandler(file_handler)
|
43 |
+
logger.addHandler(console_handler)
|
44 |
+
|
45 |
+
# reset logger elapsed time
|
46 |
+
def reset_time():
|
47 |
+
log_formatter.start_time = time.time()
|
48 |
+
|
49 |
+
logger.reset_time = reset_time
|
50 |
+
|
51 |
+
logger.info(
|
52 |
+
"\n".join(
|
53 |
+
"%s: %s" % (k, str(v))
|
54 |
+
for k, v in sorted(dict(vars(args)).items(), key=lambda x: x[0])
|
55 |
+
)
|
56 |
+
)
|
57 |
+
|
58 |
+
return logger
|
utils/utils.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import shutil
|
5 |
+
import os
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
def set_seed(seed):
|
11 |
+
random.seed(seed)
|
12 |
+
np.random.seed(seed)
|
13 |
+
torch.manual_seed(seed)
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
torch.cuda.manual_seed(seed)
|
16 |
+
torch.cuda.manual_seed_all(seed)
|
17 |
+
|
18 |
+
torch.backends.cudnn.deterministic = True
|
19 |
+
torch.backends.cudnn.benchmark = False
|
20 |
+
|
21 |
+
|
22 |
+
def save_checkpoint(state, is_best, checkpoint_path, filename="checkpoint.pt"):
|
23 |
+
filename = os.path.join(checkpoint_path, filename)
|
24 |
+
torch.save(state, filename)
|
25 |
+
if is_best:
|
26 |
+
shutil.copyfile(filename, os.path.join(checkpoint_path, "model_best.pt"))
|
27 |
+
|
28 |
+
|
29 |
+
def load_checkpoint(model, path):
|
30 |
+
best_checkpoint = torch.load(path)
|
31 |
+
model.load_state_dict(best_checkpoint["state_dict"])
|
32 |
+
|
33 |
+
def log_metrics(set_name, metrics, logger):
|
34 |
+
logger.info(
|
35 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}".format(
|
36 |
+
set_name, metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"]
|
37 |
+
)
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
@contextlib.contextmanager
|
42 |
+
def numpy_seed(seed, *addl_seeds):
|
43 |
+
"""Context manager which seeds the NumPy PRNG with the specified seed and
|
44 |
+
restores the state afterward"""
|
45 |
+
if seed is None:
|
46 |
+
yield
|
47 |
+
return
|
48 |
+
if len(addl_seeds) > 0:
|
49 |
+
seed = int(hash((seed, *addl_seeds)) % 1e6)
|
50 |
+
state = np.random.get_state()
|
51 |
+
np.random.seed(seed)
|
52 |
+
try:
|
53 |
+
yield
|
54 |
+
finally:
|
55 |
+
np.random.set_state(state)
|
videos/celeb_synthesis.mp4
ADDED
Binary file (209 kB). View file
|
|
videos/real-1.mp4
ADDED
Binary file (631 kB). View file
|
|