Spaces:
Runtime error
Runtime error
File size: 7,870 Bytes
b6d5990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import re
import os
import wget
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from models.rawnet import SincConv, Residual_block
from models.classifiers import DeepFakeClassifier
class ImageEncoder(nn.Module):
def __init__(self, args):
super(ImageEncoder, self).__init__()
self.device = args.device
self.args = args
self.flatten = nn.Flatten()
self.sigmoid = nn.Sigmoid()
# self.fc = nn.Linear(in_features=2560, out_features = 2)
self.pretrained_image_encoder = args.pretrained_image_encoder
self.freeze_image_encoder = args.freeze_image_encoder
if self.pretrained_image_encoder == False:
self.model = DeepFakeClassifier(encoder = "tf_efficientnet_b7_ns").to(self.device)
else:
self.pretrained_ckpt = torch.load('pretrained\\final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23', map_location = torch.device(self.args.device))
self.state_dict = self.pretrained_ckpt.get("state_dict", self.pretrained_ckpt)
self.model = DeepFakeClassifier(encoder = "tf_efficientnet_b7_ns").to(self.device)
print("Loading pretrained image encoder...")
self.model.load_state_dict({re.sub("^module.", "", k): v for k, v in self.state_dict.items()}, strict=True)
print("Loaded pretrained image encoder.")
if self.freeze_image_encoder == True:
for idx, param in self.model.named_parameters():
param.requires_grad = False
# self.model.fc = nn.Identity()
def forward(self, x):
x = self.model(x)
out = self.sigmoid(x)
# x = self.flatten(x)
# out = self.fc(x)
return out
class RawNet(nn.Module):
def __init__(self, args):
super(RawNet, self).__init__()
self.device=args.device
self.filts = [20, [20, 20], [20, 128], [128, 128]]
self.Sinc_conv=SincConv(device=self.device,
out_channels = self.filts[0],
kernel_size = 1024,
in_channels = args.in_channels)
self.first_bn = nn.BatchNorm1d(num_features = self.filts[0])
self.selu = nn.SELU(inplace=True)
self.block0 = nn.Sequential(Residual_block(nb_filts = self.filts[1], first = True))
self.block1 = nn.Sequential(Residual_block(nb_filts = self.filts[1]))
self.block2 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
self.filts[2][0] = self.filts[2][1]
self.block3 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
self.block4 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
self.block5 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc_attention0 = self._make_attention_fc(in_features = self.filts[1][-1],
l_out_features = self.filts[1][-1])
self.fc_attention1 = self._make_attention_fc(in_features = self.filts[1][-1],
l_out_features = self.filts[1][-1])
self.fc_attention2 = self._make_attention_fc(in_features = self.filts[2][-1],
l_out_features = self.filts[2][-1])
self.fc_attention3 = self._make_attention_fc(in_features = self.filts[2][-1],
l_out_features = self.filts[2][-1])
self.fc_attention4 = self._make_attention_fc(in_features = self.filts[2][-1],
l_out_features = self.filts[2][-1])
self.fc_attention5 = self._make_attention_fc(in_features = self.filts[2][-1],
l_out_features = self.filts[2][-1])
self.bn_before_gru = nn.BatchNorm1d(num_features = self.filts[2][-1])
self.gru = nn.GRU(input_size = self.filts[2][-1],
hidden_size = args.gru_node,
num_layers = args.nb_gru_layer,
batch_first = True)
self.fc1_gru = nn.Linear(in_features = args.gru_node,
out_features = args.nb_fc_node)
self.fc2_gru = nn.Linear(in_features = args.nb_fc_node,
out_features = args.nb_classes ,bias=True)
self.sig = nn.Sigmoid()
self.logsoftmax = nn.LogSoftmax(dim=1)
self.pretrained_audio_encoder = args.pretrained_audio_encoder
self.freeze_audio_encoder = args.freeze_audio_encoder
if self.pretrained_audio_encoder == True:
print("Loading pretrained audio encoder")
ckpt = torch.load('pretrained\\RawNet.pth', map_location = torch.device(self.device))
print("Loaded pretrained audio encoder")
self.load_state_dict(ckpt, strict = True)
if self.freeze_audio_encoder:
for param in self.parameters():
param.requires_grad = False
def forward(self, x, y = None):
nb_samp = x.shape[0]
len_seq = x.shape[1]
x=x.view(nb_samp,1,len_seq)
x = self.Sinc_conv(x)
x = F.max_pool1d(torch.abs(x), 3)
x = self.first_bn(x)
x = self.selu(x)
x0 = self.block0(x)
y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter])
y0 = self.fc_attention0(y0)
y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1) # torch.Size([batch, filter, 1])
x = x0 * y0 + y0 # (batch, filter, time) x (batch, filter, 1)
x1 = self.block1(x)
y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter])
y1 = self.fc_attention1(y1)
y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1) # torch.Size([batch, filter, 1])
x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1)
x2 = self.block2(x)
y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter])
y2 = self.fc_attention2(y2)
y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1) # torch.Size([batch, filter, 1])
x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1)
x3 = self.block3(x)
y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter])
y3 = self.fc_attention3(y3)
y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1) # torch.Size([batch, filter, 1])
x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1)
x4 = self.block4(x)
y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter])
y4 = self.fc_attention4(y4)
y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1) # torch.Size([batch, filter, 1])
x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1)
x5 = self.block5(x)
y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter])
y5 = self.fc_attention5(y5)
y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1) # torch.Size([batch, filter, 1])
x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1)
x = self.bn_before_gru(x)
x = self.selu(x)
x = x.permute(0, 2, 1) #(batch, filt, time) >> (batch, time, filt)
self.gru.flatten_parameters()
x, _ = self.gru(x)
x = x[:,-1,:]
x = self.fc1_gru(x)
x = self.fc2_gru(x)
output=self.logsoftmax(x)
return output
def _make_attention_fc(self, in_features, l_out_features):
l_fc = []
l_fc.append(nn.Linear(in_features = in_features,
out_features = l_out_features))
return nn.Sequential(*l_fc)
def _make_layer(self, nb_blocks, nb_filts, first = False):
layers = []
#def __init__(self, nb_filts, first = False):
for i in range(nb_blocks):
first = first if i == 0 else False
layers.append(Residual_block(nb_filts = nb_filts,
first = first))
if i == 0: nb_filts[0] = nb_filts[1]
return nn.Sequential(*layers) |