File size: 7,870 Bytes
b6d5990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import re
import os
import wget
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from models.rawnet import SincConv, Residual_block
from models.classifiers import DeepFakeClassifier

class ImageEncoder(nn.Module):
    def __init__(self, args):
        super(ImageEncoder, self).__init__()
        self.device = args.device
        self.args = args
        self.flatten = nn.Flatten()
        self.sigmoid = nn.Sigmoid()
        # self.fc = nn.Linear(in_features=2560, out_features = 2)
        self.pretrained_image_encoder = args.pretrained_image_encoder
        self.freeze_image_encoder = args.freeze_image_encoder

        if self.pretrained_image_encoder == False:
            self.model = DeepFakeClassifier(encoder = "tf_efficientnet_b7_ns").to(self.device)

        else:
            self.pretrained_ckpt = torch.load('pretrained\\final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23', map_location = torch.device(self.args.device))
            self.state_dict = self.pretrained_ckpt.get("state_dict", self.pretrained_ckpt)

            self.model = DeepFakeClassifier(encoder = "tf_efficientnet_b7_ns").to(self.device)
            print("Loading pretrained image encoder...")
            self.model.load_state_dict({re.sub("^module.", "", k): v for k, v in self.state_dict.items()}, strict=True)
            print("Loaded pretrained image encoder.")

        if self.freeze_image_encoder == True:
            for idx, param in self.model.named_parameters():
                param.requires_grad = False

        # self.model.fc = nn.Identity()

    def forward(self, x):
        x = self.model(x)
        out = self.sigmoid(x)
        # x = self.flatten(x)
        # out = self.fc(x)
        return out


class RawNet(nn.Module):
    def __init__(self, args):
        super(RawNet, self).__init__()
        
        self.device=args.device
        self.filts = [20, [20, 20], [20, 128], [128, 128]]

        self.Sinc_conv=SincConv(device=self.device,
			out_channels = self.filts[0],
			kernel_size = 1024,
            in_channels = args.in_channels)
        
        self.first_bn = nn.BatchNorm1d(num_features = self.filts[0])
        self.selu = nn.SELU(inplace=True)
        self.block0 = nn.Sequential(Residual_block(nb_filts = self.filts[1], first = True))
        self.block1 = nn.Sequential(Residual_block(nb_filts = self.filts[1]))
        self.block2 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
        self.filts[2][0] = self.filts[2][1]
        self.block3 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
        self.block4 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
        self.block5 = nn.Sequential(Residual_block(nb_filts = self.filts[2]))
        self.avgpool = nn.AdaptiveAvgPool1d(1)

        self.fc_attention0 = self._make_attention_fc(in_features = self.filts[1][-1],
            l_out_features = self.filts[1][-1])
        self.fc_attention1 = self._make_attention_fc(in_features = self.filts[1][-1],
            l_out_features = self.filts[1][-1])
        self.fc_attention2 = self._make_attention_fc(in_features = self.filts[2][-1],
            l_out_features = self.filts[2][-1])
        self.fc_attention3 = self._make_attention_fc(in_features = self.filts[2][-1],
            l_out_features = self.filts[2][-1])
        self.fc_attention4 = self._make_attention_fc(in_features = self.filts[2][-1],
            l_out_features = self.filts[2][-1])
        self.fc_attention5 = self._make_attention_fc(in_features = self.filts[2][-1],
            l_out_features = self.filts[2][-1])

        self.bn_before_gru = nn.BatchNorm1d(num_features = self.filts[2][-1])
        self.gru = nn.GRU(input_size = self.filts[2][-1],
			hidden_size = args.gru_node,
			num_layers = args.nb_gru_layer,
			batch_first = True)
        
        self.fc1_gru = nn.Linear(in_features = args.gru_node,
			out_features = args.nb_fc_node)
       
        self.fc2_gru = nn.Linear(in_features = args.nb_fc_node,
			out_features = args.nb_classes ,bias=True)
       
        self.sig = nn.Sigmoid()
        self.logsoftmax = nn.LogSoftmax(dim=1)
        self.pretrained_audio_encoder = args.pretrained_audio_encoder
        self.freeze_audio_encoder = args.freeze_audio_encoder

        if self.pretrained_audio_encoder == True:
            print("Loading pretrained audio encoder")
            ckpt = torch.load('pretrained\\RawNet.pth', map_location = torch.device(self.device))
            print("Loaded pretrained audio encoder")
            self.load_state_dict(ckpt, strict = True)
        
        if self.freeze_audio_encoder:
                for param in self.parameters():
                    param.requires_grad = False


    def forward(self, x, y = None):

        nb_samp = x.shape[0]
        len_seq = x.shape[1]
        x=x.view(nb_samp,1,len_seq)
        
        x = self.Sinc_conv(x)    
        x = F.max_pool1d(torch.abs(x), 3)
        x = self.first_bn(x)
        x =  self.selu(x)
        
        x0 = self.block0(x)
        y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter])
        y0 = self.fc_attention0(y0)
        y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1)  # torch.Size([batch, filter, 1])
        x = x0 * y0 + y0  # (batch, filter, time) x (batch, filter, 1)
        

        x1 = self.block1(x)
        y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter])
        y1 = self.fc_attention1(y1)
        y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1)  # torch.Size([batch, filter, 1])
        x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1)

        x2 = self.block2(x)
        y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter])
        y2 = self.fc_attention2(y2)
        y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1)  # torch.Size([batch, filter, 1])
        x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1)

        x3 = self.block3(x)
        y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter])
        y3 = self.fc_attention3(y3)
        y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1)  # torch.Size([batch, filter, 1])
        x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1)

        x4 = self.block4(x)
        y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter])
        y4 = self.fc_attention4(y4)
        y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1)  # torch.Size([batch, filter, 1])
        x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1)

        x5 = self.block5(x)
        y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter])
        y5 = self.fc_attention5(y5)
        y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1)  # torch.Size([batch, filter, 1])
        x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1)

        x = self.bn_before_gru(x)
        x = self.selu(x)
        x = x.permute(0, 2, 1)     #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]
        x = self.fc1_gru(x)
        x = self.fc2_gru(x)
        output=self.logsoftmax(x)
      
        return output
        
        

    def _make_attention_fc(self, in_features, l_out_features):

        l_fc = []
        
        l_fc.append(nn.Linear(in_features = in_features,
			        out_features = l_out_features))

        

        return nn.Sequential(*l_fc)


    def _make_layer(self, nb_blocks, nb_filts, first = False):
        layers = []
        #def __init__(self, nb_filts, first = False):
        for i in range(nb_blocks):
            first = first if i == 0 else False
            layers.append(Residual_block(nb_filts = nb_filts,
				first = first))
            if i == 0: nb_filts[0] = nb_filts[1]
            
        return nn.Sequential(*layers)