Spaces:
Sleeping
Sleeping
File size: 10,647 Bytes
6e78b52 6176e99 6e78b52 7d6627d 6e78b52 7d6627d 74c89d6 7d6627d 6e78b52 7d6627d 6e78b52 7d6627d 6e78b52 7d6627d 6e78b52 7d6627d 6e78b52 7d6627d a802631 7d6627d 6e78b52 7d6627d 6e78b52 7d6627d 6e78b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import os
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
import re
import pathlib
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.llms import HuggingFacePipeline
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.vectorstores import FAISS
from PyPDF2 import PdfReader
import os
import time
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.document_loaders.image import UnstructuredImageLoader
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.document_loaders import UnstructuredPowerPointLoader
from langchain.document_loaders import TextLoader
from langchain.memory import ConversationBufferWindowMemory
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.memory.chat_message_histories.streamlit import StreamlitChatMessageHistory
class UploadDoc:
def __init__(self, path_data):
self.path_data = path_data
def prepare_filetype(self):
extension_lists = {
".docx": [],
".pdf": [],
".html": [],
".png": [],
".pptx": [],
".txt": [],
}
path_list = []
for path, subdirs, files in os.walk(self.path_data):
for name in files:
path_list.append(os.path.join(path, name))
#print(os.path.join(path, name))
# Loop through the path_list and categorize files
for filename in path_list:
file_extension = pathlib.Path(filename).suffix
#print("File Extension:", file_extension)
if file_extension in extension_lists:
extension_lists[file_extension].append(filename)
return extension_lists
def upload_docx(self, extension_lists):
#word
data_docxs = []
for doc in extension_lists[".docx"]:
loader = Docx2txtLoader(doc)
data = loader.load()
data_docxs.extend(data)
return data_docxs
def upload_pdf(self, extension_lists):
#pdf
data_pdf = []
for doc in extension_lists[".pdf"]:
loader = PyPDFLoader(doc)
data = loader.load_and_split()
data_pdf.extend(data)
return data_pdf
def upload_html(self, extension_lists):
#html
data_html = []
for doc in extension_lists[".html"]:
loader = UnstructuredHTMLLoader(doc)
data = loader.load()
data_html.extend(data)
return data_html
def upload_png_ocr(self, extension_lists):
#png ocr
data_png = []
for doc in extension_lists[".png"]:
loader = UnstructuredImageLoader(doc)
data = loader.load()
data_png.extend(data)
return data_png
def upload_pptx(self, extension_lists):
#power point
data_pptx = []
for doc in extension_lists[".pptx"]:
loader = UnstructuredPowerPointLoader(doc)
data = loader.load()
data_pptx.extend(data)
return data_pptx
def upload_txt(self, extension_lists):
#txt
data_txt = []
for doc in extension_lists[".txt"]:
loader = TextLoader(doc)
data = loader.load()
data_txt.extend(data)
return data_txt
def count_files(self, extension_lists):
file_extension_counts = {}
# Count the quantity of each item
for ext, file_list in extension_lists.items():
file_extension_counts[ext] = len(file_list)
return print(f"number of file:{file_extension_counts}")
# Print the counts
# for ext, count in file_extension_counts.items():
# return print(f"{ext}: {count} file")
def create_document(self, dataframe=True):
documents = []
extension_lists = self.prepare_filetype()
self.count_files(extension_lists)
upload_functions = {
".docx": self.upload_docx,
".pdf": self.upload_pdf,
".html": self.upload_html,
".png": self.upload_png_ocr,
".pptx": self.upload_pptx,
".txt": self.upload_txt,
}
for extension, upload_function in upload_functions.items():
if len(extension_lists[extension]) > 0:
if extension == ".xlsx" or extension == ".csv":
data = upload_function(extension_lists, dataframe)
else:
data = upload_function(extension_lists)
documents.extend(data)
return documents
def split_docs(documents,chunk_size=500):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=50)
sp_docs = text_splitter.split_documents(documents)
return sp_docs
@st.cache_resource
def load_llama2_llamaCpp():
core_model_name = "llama-2-7b-chat.Q4_0.gguf"
n_gpu_layers = 32
n_batch = 512
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(
model_path=core_model_name,
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
callback_manager=callback_manager,
verbose=True,n_ctx = 4096, temperature = 0.1, max_tokens = 256
)
return llm
def set_custom_prompt():
custom_prompt_template = """ Use the following pieces of information to answer the user's question.
If you don't know the answer, please just say that you don't know the answer, don't try to make up
an answer.
Context : {context}
chat_history : {chat_history}
Question : {question}
Only returns the helpful answer below and nothing else.
Helpful answer:
"""
prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context',
'question',
'chat_history'])
return prompt
@st.cache_resource
def load_embeddings():
embeddings = HuggingFaceEmbeddings(model_name = "sentence-transformers/all-MiniLM-L6-v2",
model_kwargs = {'device': 'cpu'})
return embeddings
def main():
msgs = StreamlitChatMessageHistory(key="langchain_messages")
print(msgs)
if "messages" not in st.session_state:
st.session_state.messages = []
data = []
# DB_FAISS_UPLOAD_PATH = "vectorstores/db_faiss"
st.header("DOCUMENT QUESTION ANSWERING IS2")
# directory = "data"
# data_dir = UploadDoc(directory).create_document()
# data.extend(data_dir)
# #create vector from upload
# if len(data) > 0 :
# sp_docs = split_docs(documents = data)
# st.write(f"This document have {len(sp_docs)} chunks")
# embeddings = load_embeddings()
# with st.spinner('Wait for create vector'):
# db = FAISS.from_documents(sp_docs, embeddings)
# # db.save_local(DB_FAISS_UPLOAD_PATH)
# # st.write(f"Your model is already store in {DB_FAISS_UPLOAD_PATH}")
llm = load_llama2_llamaCpp()
qa_prompt = set_custom_prompt()
memory = ConversationBufferWindowMemory(k = 0, return_messages=True, input_key= 'question', output_key='answer', memory_key="chat_history")
#memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
doc_chain = load_qa_chain(llm, chain_type="stuff", prompt = qa_prompt)
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
print(uploaded_file)
if uploaded_file is not None:
embeddings = load_embeddings()
pdf_reader = PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
db = FAISS.from_texts(text, embeddings)
qa_chain = ConversationalRetrievalChain(
retriever =db.as_retriever(search_type="similarity_score_threshold", search_kwargs={'k':3, "score_threshold": 0.7}),
question_generator=question_generator,
#condense_question_prompt=CONDENSE_QUESTION_PROMPT,
combine_docs_chain=doc_chain,
return_source_documents=True,
memory = memory,
#get_chat_history=lambda h :h
)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if query := st.chat_input("What is up?"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(query)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": query})
start = time.time()
response = qa_chain({'question': query})
url_list = set([i.metadata['source'] for i in response['source_documents']])
#print(f"condensed quesion : {question_generator.run({'chat_history': response['chat_history'], 'question' : query})}")
with st.chat_message("assistant"):
st.markdown(response['answer'])
end = time.time()
st.write("Respone time:",int(end-start),"sec")
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response['answer']})
with st.expander("See the related documents"):
for count, url in enumerate(url_list):
#url_reg = regex_source(url)
st.write(str(count+1)+":", url)
clear_button = st.button("Start new convo")
if clear_button :
st.session_state.messages = []
qa_chain.memory.chat_memory.clear()
if __name__ == '__main__':
main() |