SiraH commited on
Commit
74c89d6
1 Parent(s): 7d6627d

Fix db error

Browse files
Files changed (1) hide show
  1. app.py +9 -8
app.py CHANGED
@@ -214,6 +214,15 @@ def main():
214
  # db = FAISS.from_documents(sp_docs, embeddings)
215
  # # db.save_local(DB_FAISS_UPLOAD_PATH)
216
  # # st.write(f"Your model is already store in {DB_FAISS_UPLOAD_PATH}")
 
 
 
 
 
 
 
 
 
217
  uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
218
  print(uploaded_file)
219
  if uploaded_file is not None:
@@ -223,14 +232,6 @@ def main():
223
  for page in pdf_reader.pages:
224
  text += page.extract_text()
225
  db = FAISS.from_texts(text, embeddings)
226
-
227
- llm = load_llama2_llamaCpp()
228
- qa_prompt = set_custom_prompt()
229
- memory = ConversationBufferWindowMemory(k = 0, return_messages=True, input_key= 'question', output_key='answer', memory_key="chat_history")
230
- #memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
231
- doc_chain = load_qa_chain(llm, chain_type="stuff", prompt = qa_prompt)
232
- question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
233
- if db is not None :
234
  qa_chain = ConversationalRetrievalChain(
235
  retriever =db.as_retriever(search_type="similarity_score_threshold", search_kwargs={'k':3, "score_threshold": 0.7}),
236
  question_generator=question_generator,
 
214
  # db = FAISS.from_documents(sp_docs, embeddings)
215
  # # db.save_local(DB_FAISS_UPLOAD_PATH)
216
  # # st.write(f"Your model is already store in {DB_FAISS_UPLOAD_PATH}")
217
+
218
+ llm = load_llama2_llamaCpp()
219
+ qa_prompt = set_custom_prompt()
220
+ memory = ConversationBufferWindowMemory(k = 0, return_messages=True, input_key= 'question', output_key='answer', memory_key="chat_history")
221
+ #memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
222
+ doc_chain = load_qa_chain(llm, chain_type="stuff", prompt = qa_prompt)
223
+ question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
224
+
225
+
226
  uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
227
  print(uploaded_file)
228
  if uploaded_file is not None:
 
232
  for page in pdf_reader.pages:
233
  text += page.extract_text()
234
  db = FAISS.from_texts(text, embeddings)
 
 
 
 
 
 
 
 
235
  qa_chain = ConversationalRetrievalChain(
236
  retriever =db.as_retriever(search_type="similarity_score_threshold", search_kwargs={'k':3, "score_threshold": 0.7}),
237
  question_generator=question_generator,