File size: 31,847 Bytes
f6aa1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda65aa
f6aa1e3
dda65aa
f6aa1e3
 
dda65aa
f6aa1e3
dda65aa
f6aa1e3
 
 
 
dda65aa
f6aa1e3
 
dda65aa
f6aa1e3
 
 
dda65aa
f6aa1e3
 
 
dda65aa
f6aa1e3
 
 
 
dda65aa
f6aa1e3
 
 
 
 
 
 
dda65aa
f6aa1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85fd14e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# streamlit_app.py
import streamlit as st
import pandas as pd
import requests
import json
import plotly.express as px
import plotly.graph_objects as go
import numpy as np # For random array in placeholders
import os
import io
# Configuration
FLASK_API_URL = "http://localhost:5000" # Ensure this matches your Flask app's host and port

st.set_page_config(layout="wide", page_title="CausalBox Toolkit")

st.title("πŸ”¬ CausalBox: A Causal Inference Toolkit")
st.markdown("Uncover causal relationships, simulate interventions, and estimate treatment effects.")

# --- Session State Initialization ---
if 'processed_data' not in st.session_state:
    st.session_state.processed_data = None
if 'processed_columns' not in st.session_state:
    st.session_state.processed_columns = None
if 'causal_graph_adj' not in st.session_state:
    st.session_state.causal_graph_adj = None
if 'causal_graph_nodes' not in st.session_state:
    st.session_state.causal_graph_nodes = None

# --- Data Preprocessing Module ---
st.header("1. Data Preprocessor 🧹")
st.write("Upload your CSV dataset or use a generated sample dataset.")

# Option to use generated sample dataset
if st.button("Use Sample Dataset (sample_dataset.csv)"):
    # Path to the sample_dataset.csv relative to streamlit_app.py
    sample_csv_path = os.path.join(os.path.dirname(__file__), 'data', 'sample_dataset.csv')
    
    if os.path.exists(sample_csv_path):
        with open(sample_csv_path, 'rb') as f:
            csv_content = f.read()

        files = {'file': ('sample_dataset.csv', csv_content, 'text/csv')}

        try:
            response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
            response.raise_for_status()
            processed_data_json = response.json()

            st.session_state.processed_data = processed_data_json['data']
            st.session_state.processed_columns = processed_data_json['columns']
            st.success("Sample dataset loaded and preprocessed successfully!")
            st.json(processed_data_json['columns'])

        except requests.exceptions.ConnectionError:
            st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
        except requests.exceptions.HTTPError as http_err:
            st.error(f"HTTP error occurred: {http_err} - Server response: {http_err.response.text}")
        except Exception as e:
            st.error(f"An unexpected error occurred: {e}")

    else:
        st.error(f"Sample dataset not found at {sample_csv_path}. Please ensure it exists in your 'data' folder.")

# Option to upload your own CSV
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
    st.info("Uploading and preprocessing data...")
    files = {'file': (uploaded_file.name, uploaded_file.getvalue(), 'text/csv')}

    try:
        response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
        if response.status_code == 200:
            result = response.json()
            st.session_state.processed_data = result['data']
            st.session_state.processed_columns = result['columns']
            st.success("File preprocessed successfully!")
            st.dataframe(pd.DataFrame(st.session_state.processed_data).head())
        else:
            st.error(f"Error during preprocessing: {response.json().get('detail', 'Unknown error')}")
    except requests.exceptions.ConnectionError:
        st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")

# --- Causal Discovery Module ---
st.header("2. Causal Discovery πŸ•΅οΈβ€β™‚οΈ")
if st.session_state.processed_data:
    st.write("Learn the causal structure from your preprocessed data.")
    
    discovery_algo = st.selectbox(
        "Select Causal Discovery Algorithm:",
        ("PC Algorithm", "GES (Greedy Equivalence Search) - Placeholder", "NOTEARS - Placeholder")
    )
    
    if st.button("Discover Causal Graph"):
        st.info(f"Discovering graph using {discovery_algo}...")
        algo_map = {
            "PC Algorithm": "pc",
            "GES (Greedy Equivalence Search) - Placeholder": "ges",
            "NOTEARS - Placeholder": "notears"
        }
        selected_algo_code = algo_map[discovery_algo]

        try:
            response = requests.post(
                f"{FLASK_API_URL}/discover/",
                json={"data": st.session_state.processed_data, "algorithm": selected_algo_code}
            )
            if response.status_code == 200:
                result = response.json()
                st.session_state.causal_graph_adj = result['graph']
                st.session_state.causal_graph_nodes = st.session_state.processed_columns
                st.success("Causal graph discovered!")
                st.subheader("Causal Graph Visualization")
                # Visualization will be handled by the Causal Graph Visualizer section
            else:
                st.error(f"Error during causal discovery: {response.json().get('detail', 'Unknown error')}")
        except requests.exceptions.ConnectionError:
            st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
        except Exception as e:
            st.error(f"An unexpected error occurred: {e}")
else:
    st.info("Please preprocess data first to enable causal discovery.")

# --- Causal Graph Visualizer Module ---
st.header("3. Causal Graph Visualizer πŸ“Š")
if st.session_state.causal_graph_adj and st.session_state.causal_graph_nodes:
    st.write("Interactive visualization of the discovered causal graph.")
    try:
        response = requests.post(
            f"{FLASK_API_URL}/visualize/graph",
            json={"graph": st.session_state.causal_graph_adj, "nodes": st.session_state.causal_graph_nodes}
        )
        if response.status_code == 200:
            graph_json = response.json()['graph']
            fig = go.Figure(json.loads(graph_json))
            st.plotly_chart(fig, use_container_width=True)
            st.markdown("""
            **Graph Explanation:**
            * **Nodes:** Represent variables in your dataset.
            * **Arrows (Edges):** Indicate a direct causal influence from one variable (the tail) to another (the head).
            * **No Arrow:** Suggests no direct causal relationship was found, or the relationship is mediated by other variables.

            This graph helps answer "Why did it happen?" by showing the structural relationships.
            """)
        else:
            st.error(f"Error visualizing graph: {response.json().get('detail', 'Unknown error')}")
    except requests.exceptions.ConnectionError:
        st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
    except Exception as e:
        st.error(f"An unexpected error occurred during visualization: {e}")
else:
    st.info("Please discover a causal graph first to visualize it.")


# --- Do-Calculus Engine Module ---
st.header("4. Do-Calculus Engine πŸ§ͺ")
if st.session_state.processed_data and st.session_state.causal_graph_adj:
    st.write("Simulate interventions and observe their effects based on the causal graph.")
    
    intervention_var = st.selectbox(
        "Select variable to intervene on:",
        st.session_state.processed_columns,
        key="inter_var_select"
    )
    # Attempt to infer type for intervention_value input
    # Simplified approach: assuming numerical for now due to preprocessor output
    if intervention_var and isinstance(st.session_state.processed_data[0][intervention_var], (int, float)):
        intervention_value = st.number_input(f"Set '{intervention_var}' to value:", key="inter_val_input")
    else: # Treat as string/categorical for input, then try to preprocess for API
        intervention_value = st.text_input(f"Set '{intervention_var}' to value:", key="inter_val_input_text")
        st.warning("Categorical intervention values might require specific encoding logic on the backend.")

    if st.button("Perform Intervention"):
        st.info(f"Performing intervention: do('{intervention_var}' = {intervention_value})...")
        try:
            response = requests.post(
                f"{FLASK_API_URL}/intervene/",
                json={
                    "data": st.session_state.processed_data,
                    "intervention_var": intervention_var,
                    "intervention_value": intervention_value,
                    "graph": st.session_state.causal_graph_adj # Pass graph for advanced do-calculus
                }
            )
            if response.status_code == 200:
                intervened_data = pd.DataFrame(response.json()['intervened_data'])
                st.success("Intervention simulated successfully!")
                st.subheader("Intervened Data (First 10 rows)")
                st.dataframe(intervened_data.head(10))
                
                # Simple comparison visualization (e.g., histogram of outcome variable)
                if st.session_state.processed_columns and 'FinalExamScore' in st.session_state.processed_columns:
                    original_df = pd.DataFrame(st.session_state.processed_data)
                    fig_dist = go.Figure()
                    fig_dist.add_trace(go.Histogram(x=original_df['FinalExamScore'], name='Original', opacity=0.7))
                    fig_dist.add_trace(go.Histogram(x=intervened_data['FinalExamScore'], name='Intervened', opacity=0.0))
                    
                    st.plotly_chart(fig_dist, use_container_width=True)
                    st.markdown("""
                    **Intervention Explanation:**
                    * By simulating `do(X=x)`, we are forcing the value of X, effectively breaking its causal links from its parents.
                    * The graph above shows the distribution of a key outcome variable (e.g., `FinalExamScore`) before and after the intervention.
                    * This helps answer "What if we do this instead?" by showing the predicted outcome.
                    """)
                else:
                    st.info("Consider adding a relevant outcome variable to your dataset for better intervention analysis.")
            else:
                st.error(f"Error during intervention: {response.json().get('detail', 'Unknown error')}")
        except requests.exceptions.ConnectionError:
            st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
        except Exception as e:
            st.error(f"An unexpected error occurred during intervention: {e}")
else:
    st.info("Please preprocess data and discover a causal graph first to perform interventions.")

# --- Treatment Effect Estimator Module ---
st.header("5. Treatment Effect Estimator 🎯")
if st.session_state.processed_data:
    st.write("Estimate Average Treatment Effect (ATE) or Conditional Treatment Effect (CATE).")
    
    col1, col2 = st.columns(2)
    with col1:
        treatment_col = st.selectbox(
            "Select Treatment Variable:",
            st.session_state.processed_columns,
            key="treat_col_select"
        )
    with col2:
        outcome_col = st.selectbox(
            "Select Outcome Variable:",
            st.session_state.processed_columns,
            key="outcome_col_select"
        )
    
    all_cols_except_treat_outcome = [col for col in st.session_state.processed_columns if col not in [treatment_col, outcome_col]]
    covariates = st.multiselect(
        "Select Covariates (confounders):",
        all_cols_except_treat_outcome,
        default=all_cols_except_treat_outcome, # Default to all other columns
        key="covariates_select"
    )

    estimation_method = st.selectbox(
        "Select Estimation Method:",
        (
            "Linear Regression ATE",
            "Propensity Score Matching - Placeholder",
            "Inverse Propensity Weighting - Placeholder",
            "T-learner - Placeholder",
            "S-learner - Placeholder"
        )
    )

    if st.button("Estimate Treatment Effect"):
        st.info(f"Estimating treatment effect using {estimation_method}...")
        method_map = {
            "Linear Regression ATE": "linear_regression",
            "Propensity Score Matching - Placeholder": "propensity_score_matching",
            "Inverse Propensity Weighting - Placeholder": "inverse_propensity_weighting",
            "T-learner - Placeholder": "t_learner",
            "S-learner - Placeholder": "s_learner"
        }
        selected_method_code = method_map[estimation_method]

        try:
            response = requests.post(
                f"{FLASK_API_URL}/treatment/estimate_ate",
                json={
                    "data": st.session_state.processed_data,
                    "treatment_col": treatment_col,
                    "outcome_col": outcome_col,
                    "covariates": covariates,
                    "method": selected_method_code
                }
            )
            if response.status_code == 200:
                ate_result = response.json()['result']
                st.success(f"Treatment effect estimated using {estimation_method}:")
                st.write(f"**Estimated ATE: {ate_result:.4f}**")
                st.markdown("""
                **Treatment Effect Explanation:**
                * **Average Treatment Effect (ATE):** Measures the average causal effect of a treatment (e.g., `StudyHours`) on an outcome (e.g., `FinalExamScore`) across the entire population.
                * It answers "How much does doing X cause a change in Y?".
                * This estimation attempts to control for confounders (variables that influence both treatment and outcome) to isolate the true causal effect.
                """)
            else:
                st.error(f"Error during ATE estimation: {response.json().get('detail', 'Unknown error')}")
        except requests.exceptions.ConnectionError:
            st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
        except Exception as e:
            st.error(f"An unexpected error occurred during ATE estimation: {e}")
else:
    st.info("Please preprocess data first to estimate treatment effects.")

# --- Prediction Module ---
st.header("6. Prediction Module πŸ“ˆ")
if st.session_state.processed_data:
    st.write("Train a machine learning model for prediction (Regression or Classification).")
    
    prediction_type = st.selectbox(
        "Select Prediction Type:",
        ("Regression", "Classification"),
        key="prediction_type_select"
    )

    all_columns = st.session_state.processed_columns
    
    suitable_target_columns = []
    if st.session_state.processed_data:
        temp_df = pd.DataFrame(st.session_state.processed_data)
        for col in all_columns:
            # For classification, check if column is object type (string), boolean,
            # or has a limited number of unique integer values (e.g., less than 20 unique values)
            if prediction_type == 'Classification':
                if temp_df[col].dtype == 'object' or temp_df[col].dtype == 'bool':
                    suitable_target_columns.append(col)
                elif pd.api.types.is_integer_dtype(temp_df[col]) and temp_df[col].nunique() < 20: # Heuristic for discrete integers
                     suitable_target_columns.append(col)
            # For regression, primarily numerical columns
            elif prediction_type == 'Regression':
                if pd.api.types.is_numeric_dtype(temp_df[col]):
                    suitable_target_columns.append(col)

    if not suitable_target_columns:
        st.warning(f"No suitable target columns found for {prediction_type}. Please check your data types.")
        target_col = None # Set to None to prevent error if no columns are found
    else:
        # Try to pre-select the currently chosen target_col if it's still suitable
        # Otherwise, default to the first suitable column
        if 'target_col_select' in st.session_state and st.session_state.target_col_select in suitable_target_columns:
            default_target_index = suitable_target_columns.index(st.session_state.target_col_select)
        else:
            default_target_index = 0

        target_col = st.selectbox(
            "Select Target Variable:",
            suitable_target_columns,
            index=default_target_index,
            key="target_col_select"
        )

    # Filter out the target column from feature options
    feature_options = [col for col in all_columns if col != target_col]
    feature_cols = st.multiselect(
        "Select Feature Variables:",
        feature_options,
        default=feature_options, # Default to all other columns
        key="feature_cols_select"
    )

    if st.button("Train Model & Predict", key="train_predict_button"):
        if not target_col or not feature_cols:
            st.warning("Please select a target variable and at least one feature variable.")
        else:
            st.info(f"Training {prediction_type} model using Random Forest...")
            try:
                response = requests.post(
                    f"{FLASK_API_URL}/prediction/train_predict",
                    json={
                        "data": st.session_state.processed_data,
                        "target_col": target_col,
                        "feature_cols": feature_cols,
                        "prediction_type": prediction_type.lower()
                    }
                )

                if response.status_code == 200:
                    results = response.json()['results']
                    st.success(f"{prediction_type} Model Trained Successfully!")
                    st.subheader("Model Performance")

                    if prediction_type == 'Regression':
                        st.write(f"**R-squared:** {results['r2_score']:.4f}")
                        st.write(f"**Mean Squared Error (MSE):** {results['mean_squared_error']:.4f}")
                        st.write(f"**Root Mean Squared Error (RMSE):** {results['root_mean_squared_error']:.4f}")

                        st.subheader("Actual vs. Predicted Plot")
                        actual_predicted_df = pd.DataFrame(results['actual_vs_predicted'])
                        fig_reg = px.scatter(actual_predicted_df, x='Actual', y='Predicted',
                                             title='Actual vs. Predicted Values',
                                             labels={'Actual': f'Actual {target_col}', 'Predicted': f'Predicted {target_col}'})
                        fig_reg.add_trace(go.Scatter(x=[actual_predicted_df['Actual'].min(), actual_predicted_df['Actual'].max()],
                                                     y=[actual_predicted_df['Actual'].min(), actual_predicted_df['Actual'].max()],
                                                     mode='lines', name='Ideal Fit', line=dict(dash='dash', color='red')))
                        st.plotly_chart(fig_reg, use_container_width=True)

                        st.subheader("Residual Plot")
                        actual_predicted_df['Residuals'] = actual_predicted_df['Actual'] - actual_predicted_df['Predicted']
                        fig_res = px.scatter(actual_predicted_df, x='Predicted', y='Residuals',
                                             title='Residual Plot',
                                             labels={'Predicted': f'Predicted {target_col}', 'Residuals': 'Residuals'})
                        fig_res.add_hline(y=0, line_dash="dash", line_color="red")
                        st.plotly_chart(fig_res, use_container_width=True)

                    elif prediction_type == 'Classification':
                        st.write(f"**Accuracy:** {results['accuracy']:.4f}")
                        st.write(f"**Precision (weighted):** {results['precision']:.4f}")
                        st.write(f"**Recall (weighted):** {results['recall']:.4f}")
                        st.write(f"**F1-Score (weighted):** {results['f1_score']:.4f}")

                        st.subheader("Confusion Matrix")
                        conf_matrix = results['confusion_matrix']
                        class_labels = results.get('class_labels', [str(i) for i in range(len(conf_matrix))])
                        fig_cm = px.imshow(conf_matrix,
                                            labels=dict(x="Predicted", y="True", color="Count"),
                                            x=class_labels,
                                            y=class_labels,
                                            text_auto=True,
                                            color_continuous_scale="Viridis",
                                            title="Confusion Matrix")
                        st.plotly_chart(fig_cm, use_container_width=True)

                        st.subheader("Classification Report")
                        # Convert dict to DataFrame for nice display
                        report_df = pd.DataFrame(results['classification_report']).transpose()
                        st.dataframe(report_df)

                    st.subheader("Feature Importances")
                    feature_importances_df = pd.DataFrame(list(results['feature_importances'].items()), columns=['Feature', 'Importance'])
                    fig_fi = px.bar(feature_importances_df, x='Importance', y='Feature', orientation='h',
                                    title='Feature Importances',
                                    labels={'Importance': 'Importance Score', 'Feature': 'Feature Name'})
                    fig_fi.update_layout(yaxis={'categoryorder':'total ascending'}) # Sort bars
                    st.plotly_chart(fig_fi, use_container_width=True)
                else:
                    st.error(f"Error during prediction: {response.json().get('detail', 'Unknown error')}")
            except requests.exceptions.ConnectionError:
                st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
            except Exception as e:
                st.error(f"An unexpected error occurred during prediction: {e}")
else:
    st.info("Please preprocess data first to use the Prediction Module.")

# --- Time Series Causal Discovery Module ---
st.header("7. Time Series Causal Discovery ⏰")
if st.session_state.processed_data:
    st.write("Infer causal relationships in time-series data using Granger Causality.")
    st.info("Ensure your dataset includes a timestamp column and that variables are numeric.")

    all_columns = st.session_state.processed_columns
    
    # Heuristic to suggest potential timestamp columns (object/string type, or first column)
    potential_ts_cols = [col for col in all_columns if pd.DataFrame(st.session_state.processed_data)[col].dtype == 'object']
    if not potential_ts_cols and all_columns: # If no object columns, suggest the first column
        potential_ts_cols = [all_columns[0]]
    
    timestamp_col = st.selectbox(
        "Select Timestamp Column:",
        potential_ts_cols if potential_ts_cols else ["No suitable timestamp column found. Please check data."],
        key="ts_col_select"
    )

    # Filter out timestamp column and non-numeric columns for analysis
    variables_for_ts_analysis = [
        col for col in all_columns if col != timestamp_col and pd.api.types.is_numeric_dtype(pd.DataFrame(st.session_state.processed_data)[col])
    ]

    variables_to_analyze = st.multiselect(
        "Select Variables to Analyze for Granger Causality:",
        variables_for_ts_analysis,
        default=variables_for_ts_analysis,
        key="ts_vars_select"
    )

    max_lags = st.number_input(
        "Max Lags (for Granger Causality):",
        min_value=1,
        value=5, # Default value
        step=1,
        help="The maximum number of lagged observations to consider for causality."
    )

    if st.button("Discover Time Series Causality", key="ts_discover_button"):
        if not timestamp_col or not variables_to_analyze:
            st.warning("Please select a timestamp column and at least one variable to analyze.")
        elif "No suitable timestamp column found" in timestamp_col:
            st.error("Cannot proceed. Please ensure your data has a suitable timestamp column.")
        else:
            st.info("Performing Granger Causality tests...")
            try:
                response = requests.post(
                    f"{FLASK_API_URL}/timeseries/discover_causality",
                    json={
                        "data": st.session_state.processed_data,
                        "timestamp_col": timestamp_col,
                        "variables_to_analyze": variables_to_analyze,
                        "max_lags": max_lags
                    }
                )

                if response.status_code == 200:
                    results = response.json()['results']
                    st.success("Time Series Causal Discovery Complete!")
                    st.subheader("Granger Causality Test Results")

                    if results:
                        # Convert results to a DataFrame for better display
                        results_df = pd.DataFrame(results)
                        results_df['p_value'] = results_df['p_value'].round(4) # Round p-values
                        st.dataframe(results_df)

                        st.markdown("**Interpretation:** A small p-value (typically < 0.05) suggests that the 'cause' variable Granger-causes the 'effect' variable. This means past values of the 'cause' variable help predict future values of the 'effect' variable, even when past values of the 'effect' variable are considered.")
                        st.markdown(f"*(Note: Granger Causality implies predictive causality, not necessarily true mechanistic causality. Also, ensure your time series are stationary for robust results.)*")

                        # Optionally, visualize a simple causality graph
                        st.subheader("Granger Causality Graph")
                        fig_ts_graph = go.Figure()
                        nodes = []
                        edges = []
                        edge_colors = []

                        # Add nodes
                        for i, var in enumerate(variables_to_analyze):
                            nodes.append(dict(id=var, label=var, x=np.cos(i*2*np.pi/len(variables_to_analyze)), y=np.sin(i*2*np.pi/len(variables_to_analyze))))

                        # Add edges
                        for res in results:
                            if res['p_value'] < 0.05: # Consider it a causal link if p-value is below significance
                                edges.append(dict(source=res['cause'], target=res['effect'], value=1/res['p_value'], title=f"p={res['p_value']:.4f}"))
                                edge_colors.append("blue")
                            else:
                                # Optional: Show non-significant edges in a different color or omit
                                pass
                        
                        # Use a simple network graph layout (Spring layout is common)
                        # For a truly interactive graph, you might need a different library or more complex Plotly setup
                        # This is a very basic attempt to visualize; consider more robust solutions like NetworkX + Plotly/Dash
                        
                        # Simple way to draw arrows for significant relationships
                        significant_edges = [edge for edge in results if edge['p_value'] < 0.05]
                        if significant_edges:
                            st.write("Visualizing significant (p < 0.05) Granger causal links:")
                            # This needs a more robust way to draw directed edges in plotly if using just scatter/lines.
                            # For now, let's just list them clearly.
                            for edge in significant_edges:
                                st.write(f"➑️ **{edge['cause']}** Granger-causes **{edge['effect']}** (p={edge['p_value']:.4f})")
                        else:
                            st.info("No significant Granger causal links found at p < 0.05.")

                    else:
                        st.info("No Granger Causality relationships found or data insufficient.")

                else:
                    st.error(f"Error during time-series causal discovery: {response.json().get('detail', 'Unknown error')}")
            except requests.exceptions.ConnectionError:
                st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
            except Exception as e:
                st.error(f"An unexpected error occurred during time-series causal discovery: {e}")
else:
    st.info("Please preprocess data first to use the Time Series Causal Discovery Module.")

# --- CausalBox Chat Assistant ---
st.header("8. CausalBox Chat Assistant πŸ€–")
st.write("Ask questions about your loaded dataset, causal concepts, or the discovered causal graph!")

# Initialize chat history in session state
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("Ask me anything about CausalBox..."):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Prepare session context to send to the backend
    session_context = {
        "processed_data": st.session_state.processed_data,
        "processed_columns": st.session_state.processed_columns,
        "causal_graph_adj": st.session_state.causal_graph_adj,
        "causal_graph_nodes": st.session_state.causal_graph_nodes,
        # Add any other relevant session state variables that the chatbot might need
    }

    with st.spinner("Thinking..."):
        try:
            response = requests.post(
                f"{FLASK_API_URL}/chatbot/message",
                json={
                    "user_message": prompt,
                    "session_context": session_context
                }
            )

            if response.status_code == 200:
                chatbot_response_text = response.json().get('response', 'Sorry, I could not generate a response.')
            else:
                chatbot_response_text = f"Error from chatbot backend: {response.json().get('detail', 'Unknown error')}"
        except requests.exceptions.ConnectionError:
            chatbot_response_text = f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running."
        except Exception as e:
            chatbot_response_text = f"An unexpected error occurred while getting chatbot response: {e}"

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        st.markdown(chatbot_response_text)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": chatbot_response_text})

# --- Future Work (Simplified) ---
st.header("Future Work πŸš€")
st.markdown("""
-   **πŸ”„ Auto-causal graph refresh:** Monitor dataset updates and automatically refresh the causal graph.
""")

st.markdown("---")
st.info("Developed by CausalBox Team. For support, please contact us.")