ShutterStack commited on
Commit
dda65aa
·
verified ·
1 Parent(s): f6aa1e3

Update streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +10 -29
streamlit_app.py CHANGED
@@ -33,59 +33,40 @@ st.write("Upload your CSV dataset or use a generated sample dataset.")
33
  # Option to use generated sample dataset
34
  if st.button("Use Sample Dataset (sample_dataset.csv)"):
35
  # Path to the sample_dataset.csv relative to streamlit_app.py
36
- # Assumes sample_dataset.csv is in the 'data' folder at the root of the project
37
  sample_csv_path = os.path.join(os.path.dirname(__file__), 'data', 'sample_dataset.csv')
38
 
39
  if os.path.exists(sample_csv_path):
40
  with open(sample_csv_path, 'rb') as f:
41
  csv_content = f.read()
42
-
43
- # Prepare the file for upload using 'files' parameter for multipart/form-data
44
- # 'file' is the name of the input field Flask expects (request.files['file'])
45
- # 'sample_dataset.csv' is the filename
46
- # csv_content is the actual binary content of the file
47
- # 'text/csv' is the content type
48
  files = {'file': ('sample_dataset.csv', csv_content, 'text/csv')}
49
-
50
  try:
51
- # Send the file to Flask backend
52
  response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
53
- response.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
54
  processed_data_json = response.json()
55
-
56
- # Update Streamlit session state with processed data and columns
57
  st.session_state.processed_data = processed_data_json['data']
58
  st.session_state.processed_columns = processed_data_json['columns']
59
  st.success("Sample dataset loaded and preprocessed successfully!")
60
-
61
- # Optional: Display the columns or a snippet of data for confirmation
62
  st.json(processed_data_json['columns'])
63
-
64
  except requests.exceptions.ConnectionError:
65
  st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
66
- except requests.exceptions.HTTPError as http_err: # Catch HTTPError specifically for detailed error
67
  st.error(f"HTTP error occurred: {http_err} - Server response: {http_err.response.text}")
68
  except Exception as e:
69
  st.error(f"An unexpected error occurred: {e}")
 
70
  else:
71
  st.error(f"Sample dataset not found at {sample_csv_path}. Please ensure it exists in your 'data' folder.")
72
-
73
- if response.status_code == 200:
74
- result = response.json()
75
- st.session_state.processed_data = result['data']
76
- st.session_state.processed_columns = result['columns']
77
- st.success("Sample dataset preprocessed successfully!")
78
- st.dataframe(pd.DataFrame(st.session_state.processed_data).head()) # Display first few rows
79
- else:
80
- st.error(f"Error preprocessing sample dataset: {response.json().get('detail', 'Unknown error')}")
81
- except Exception as e:
82
- st.error(f"Could not load or process sample dataset: {e}")
83
-
84
 
 
85
  uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
86
  if uploaded_file is not None:
87
  st.info("Uploading and preprocessing data...")
88
  files = {'file': (uploaded_file.name, uploaded_file.getvalue(), 'text/csv')}
 
89
  try:
90
  response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
91
  if response.status_code == 200:
@@ -93,7 +74,7 @@ if uploaded_file is not None:
93
  st.session_state.processed_data = result['data']
94
  st.session_state.processed_columns = result['columns']
95
  st.success("File preprocessed successfully!")
96
- st.dataframe(pd.DataFrame(st.session_state.processed_data).head()) # Display first few rows
97
  else:
98
  st.error(f"Error during preprocessing: {response.json().get('detail', 'Unknown error')}")
99
  except requests.exceptions.ConnectionError:
 
33
  # Option to use generated sample dataset
34
  if st.button("Use Sample Dataset (sample_dataset.csv)"):
35
  # Path to the sample_dataset.csv relative to streamlit_app.py
 
36
  sample_csv_path = os.path.join(os.path.dirname(__file__), 'data', 'sample_dataset.csv')
37
 
38
  if os.path.exists(sample_csv_path):
39
  with open(sample_csv_path, 'rb') as f:
40
  csv_content = f.read()
41
+
 
 
 
 
 
42
  files = {'file': ('sample_dataset.csv', csv_content, 'text/csv')}
43
+
44
  try:
 
45
  response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
46
+ response.raise_for_status()
47
  processed_data_json = response.json()
48
+
 
49
  st.session_state.processed_data = processed_data_json['data']
50
  st.session_state.processed_columns = processed_data_json['columns']
51
  st.success("Sample dataset loaded and preprocessed successfully!")
 
 
52
  st.json(processed_data_json['columns'])
53
+
54
  except requests.exceptions.ConnectionError:
55
  st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
56
+ except requests.exceptions.HTTPError as http_err:
57
  st.error(f"HTTP error occurred: {http_err} - Server response: {http_err.response.text}")
58
  except Exception as e:
59
  st.error(f"An unexpected error occurred: {e}")
60
+
61
  else:
62
  st.error(f"Sample dataset not found at {sample_csv_path}. Please ensure it exists in your 'data' folder.")
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Option to upload your own CSV
65
  uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
66
  if uploaded_file is not None:
67
  st.info("Uploading and preprocessing data...")
68
  files = {'file': (uploaded_file.name, uploaded_file.getvalue(), 'text/csv')}
69
+
70
  try:
71
  response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
72
  if response.status_code == 200:
 
74
  st.session_state.processed_data = result['data']
75
  st.session_state.processed_columns = result['columns']
76
  st.success("File preprocessed successfully!")
77
+ st.dataframe(pd.DataFrame(st.session_state.processed_data).head())
78
  else:
79
  st.error(f"Error during preprocessing: {response.json().get('detail', 'Unknown error')}")
80
  except requests.exceptions.ConnectionError: