Spaces:
Sleeping
Sleeping
Update streamlit_app.py
Browse files- streamlit_app.py +10 -29
streamlit_app.py
CHANGED
@@ -33,59 +33,40 @@ st.write("Upload your CSV dataset or use a generated sample dataset.")
|
|
33 |
# Option to use generated sample dataset
|
34 |
if st.button("Use Sample Dataset (sample_dataset.csv)"):
|
35 |
# Path to the sample_dataset.csv relative to streamlit_app.py
|
36 |
-
# Assumes sample_dataset.csv is in the 'data' folder at the root of the project
|
37 |
sample_csv_path = os.path.join(os.path.dirname(__file__), 'data', 'sample_dataset.csv')
|
38 |
|
39 |
if os.path.exists(sample_csv_path):
|
40 |
with open(sample_csv_path, 'rb') as f:
|
41 |
csv_content = f.read()
|
42 |
-
|
43 |
-
# Prepare the file for upload using 'files' parameter for multipart/form-data
|
44 |
-
# 'file' is the name of the input field Flask expects (request.files['file'])
|
45 |
-
# 'sample_dataset.csv' is the filename
|
46 |
-
# csv_content is the actual binary content of the file
|
47 |
-
# 'text/csv' is the content type
|
48 |
files = {'file': ('sample_dataset.csv', csv_content, 'text/csv')}
|
49 |
-
|
50 |
try:
|
51 |
-
# Send the file to Flask backend
|
52 |
response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
|
53 |
-
response.raise_for_status()
|
54 |
processed_data_json = response.json()
|
55 |
-
|
56 |
-
# Update Streamlit session state with processed data and columns
|
57 |
st.session_state.processed_data = processed_data_json['data']
|
58 |
st.session_state.processed_columns = processed_data_json['columns']
|
59 |
st.success("Sample dataset loaded and preprocessed successfully!")
|
60 |
-
|
61 |
-
# Optional: Display the columns or a snippet of data for confirmation
|
62 |
st.json(processed_data_json['columns'])
|
63 |
-
|
64 |
except requests.exceptions.ConnectionError:
|
65 |
st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
|
66 |
-
except requests.exceptions.HTTPError as http_err:
|
67 |
st.error(f"HTTP error occurred: {http_err} - Server response: {http_err.response.text}")
|
68 |
except Exception as e:
|
69 |
st.error(f"An unexpected error occurred: {e}")
|
|
|
70 |
else:
|
71 |
st.error(f"Sample dataset not found at {sample_csv_path}. Please ensure it exists in your 'data' folder.")
|
72 |
-
|
73 |
-
if response.status_code == 200:
|
74 |
-
result = response.json()
|
75 |
-
st.session_state.processed_data = result['data']
|
76 |
-
st.session_state.processed_columns = result['columns']
|
77 |
-
st.success("Sample dataset preprocessed successfully!")
|
78 |
-
st.dataframe(pd.DataFrame(st.session_state.processed_data).head()) # Display first few rows
|
79 |
-
else:
|
80 |
-
st.error(f"Error preprocessing sample dataset: {response.json().get('detail', 'Unknown error')}")
|
81 |
-
except Exception as e:
|
82 |
-
st.error(f"Could not load or process sample dataset: {e}")
|
83 |
-
|
84 |
|
|
|
85 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
86 |
if uploaded_file is not None:
|
87 |
st.info("Uploading and preprocessing data...")
|
88 |
files = {'file': (uploaded_file.name, uploaded_file.getvalue(), 'text/csv')}
|
|
|
89 |
try:
|
90 |
response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
|
91 |
if response.status_code == 200:
|
@@ -93,7 +74,7 @@ if uploaded_file is not None:
|
|
93 |
st.session_state.processed_data = result['data']
|
94 |
st.session_state.processed_columns = result['columns']
|
95 |
st.success("File preprocessed successfully!")
|
96 |
-
st.dataframe(pd.DataFrame(st.session_state.processed_data).head())
|
97 |
else:
|
98 |
st.error(f"Error during preprocessing: {response.json().get('detail', 'Unknown error')}")
|
99 |
except requests.exceptions.ConnectionError:
|
|
|
33 |
# Option to use generated sample dataset
|
34 |
if st.button("Use Sample Dataset (sample_dataset.csv)"):
|
35 |
# Path to the sample_dataset.csv relative to streamlit_app.py
|
|
|
36 |
sample_csv_path = os.path.join(os.path.dirname(__file__), 'data', 'sample_dataset.csv')
|
37 |
|
38 |
if os.path.exists(sample_csv_path):
|
39 |
with open(sample_csv_path, 'rb') as f:
|
40 |
csv_content = f.read()
|
41 |
+
|
|
|
|
|
|
|
|
|
|
|
42 |
files = {'file': ('sample_dataset.csv', csv_content, 'text/csv')}
|
43 |
+
|
44 |
try:
|
|
|
45 |
response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
|
46 |
+
response.raise_for_status()
|
47 |
processed_data_json = response.json()
|
48 |
+
|
|
|
49 |
st.session_state.processed_data = processed_data_json['data']
|
50 |
st.session_state.processed_columns = processed_data_json['columns']
|
51 |
st.success("Sample dataset loaded and preprocessed successfully!")
|
|
|
|
|
52 |
st.json(processed_data_json['columns'])
|
53 |
+
|
54 |
except requests.exceptions.ConnectionError:
|
55 |
st.error(f"Could not connect to Flask API at {FLASK_API_URL}. Please ensure the backend is running.")
|
56 |
+
except requests.exceptions.HTTPError as http_err:
|
57 |
st.error(f"HTTP error occurred: {http_err} - Server response: {http_err.response.text}")
|
58 |
except Exception as e:
|
59 |
st.error(f"An unexpected error occurred: {e}")
|
60 |
+
|
61 |
else:
|
62 |
st.error(f"Sample dataset not found at {sample_csv_path}. Please ensure it exists in your 'data' folder.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Option to upload your own CSV
|
65 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
66 |
if uploaded_file is not None:
|
67 |
st.info("Uploading and preprocessing data...")
|
68 |
files = {'file': (uploaded_file.name, uploaded_file.getvalue(), 'text/csv')}
|
69 |
+
|
70 |
try:
|
71 |
response = requests.post(f"{FLASK_API_URL}/preprocess/upload", files=files)
|
72 |
if response.status_code == 200:
|
|
|
74 |
st.session_state.processed_data = result['data']
|
75 |
st.session_state.processed_columns = result['columns']
|
76 |
st.success("File preprocessed successfully!")
|
77 |
+
st.dataframe(pd.DataFrame(st.session_state.processed_data).head())
|
78 |
else:
|
79 |
st.error(f"Error during preprocessing: {response.json().get('detail', 'Unknown error')}")
|
80 |
except requests.exceptions.ConnectionError:
|