Spaces:
Runtime error
Runtime error
File size: 13,300 Bytes
d4fe1e6 2d78361 d4fe1e6 85c6a20 2d78361 d4fe1e6 5d29bbd eb601c1 8d6462e d4fe1e6 8712735 241cc6f 8712735 d4fe1e6 8d6462e fe5b0a5 241cc6f 8d6462e d4fe1e6 eb601c1 d4fe1e6 eb601c1 d4fe1e6 8712735 d4fe1e6 eb601c1 d4fe1e6 8712735 d4fe1e6 eb601c1 d4fe1e6 eb601c1 d4fe1e6 eb601c1 1955fd3 eb601c1 d4fe1e6 eb601c1 d4fe1e6 eb601c1 d4fe1e6 5d29bbd bc31fa8 5d29bbd eb601c1 5d29bbd eb601c1 b97fb24 bc31fa8 5d29bbd eb601c1 1955fd3 eb601c1 5d29bbd eb601c1 1955fd3 5d29bbd c97c9f9 5d29bbd eb601c1 5d29bbd bc31fa8 38930b8 5d29bbd eb601c1 5d29bbd eb601c1 5d29bbd eb601c1 5219f50 3f591a2 eb601c1 5d29bbd 1955fd3 8712735 1955fd3 8d6462e 1955fd3 c4bd367 241cc6f c4bd367 ff2dfb3 241cc6f c4bd367 ff2dfb3 241cc6f c4bd367 5d29bbd eb601c1 3f1a935 ff2dfb3 3f1a935 ff2dfb3 63a03db ff2dfb3 1955fd3 2442693 d4fe1e6 c52d702 1955fd3 c4bd367 1955fd3 eb601c1 c52d702 8d6462e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# -*- coding: utf-8 -*-
"""Copy of compose_glide.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
"""
# from PIL import Image
# from IPython.display import display
import torch as th
import numpy as np
from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
create_model_and_diffusion,
model_and_diffusion_defaults,
model_and_diffusion_defaults_upsampler
)
from composable_diffusion.download import download_model
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
from PIL import Image
from torch import autocast
from diffusers import StableDiffusionPipeline
# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.
has_cuda = False
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
cpu = th.device('cpu')
# iniatilize stable diffusion model
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
use_auth_token='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'
).to(cpu)
# Create base model.
timestep_respacing = 100 # @param{type: 'number'}
options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
model.convert_to_fp16()
model.to(cpu)
model.load_state_dict(load_checkpoint('base', cpu))
print('total base parameters', sum(x.numel() for x in model.parameters()))
# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
model_up.convert_to_fp16()
model_up.to(cpu)
model_up.load_state_dict(load_checkpoint('upsample', cpu))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
def show_images(batch: th.Tensor):
""" Display a batch of images inline. """
scaled = ((batch + 1) * 127.5).round().clamp(0, 255).to(th.uint8).cpu()
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
display(Image.fromarray(reshaped.numpy()))
def compose_language_descriptions(prompt, guidance_scale, steps):
options['timestep_respacing'] = str(steps)
_, diffusion = create_model_and_diffusion(**options)
# @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
prompts = [x.strip() for x in prompt.split('|')]
batch_size = 1
# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.980 # @param{type: 'number'}
masks = [True] * len(prompts) + [False]
# coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1)
masks = th.tensor(masks, dtype=th.bool, device=device)
# sampling function
def model_fn(x_t, ts, **kwargs):
half = x_t[:1]
combined = th.cat([half] * x_t.size(0), dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps = eps[masks].mean(dim=0, keepdim=True)
# cond_eps = (coefficients * eps[masks]).sum(dim=0)[None]
uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = th.cat([half_eps] * x_t.size(0), dim=0)
return th.cat([eps, rest], dim=1)
##############################
# Sample from the base model #
##############################
# Create the text tokens to feed to the model.
def sample_64(prompts):
tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts]
outputs = [model.tokenizer.padded_tokens_and_mask(
tokens, options['text_ctx']
) for tokens in tokens_list]
cond_tokens, cond_masks = zip(*outputs)
cond_tokens, cond_masks = list(cond_tokens), list(cond_masks)
full_batch_size = batch_size * (len(prompts) + 1)
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
[], options['text_ctx']
)
# Pack the tokens together into model kwargs.
model_kwargs = dict(
tokens=th.tensor(
cond_tokens + [uncond_tokens], device=device
),
mask=th.tensor(
cond_masks + [uncond_mask],
dtype=th.bool,
device=device,
),
)
# Sample from the base model.
model.del_cache()
samples = diffusion.p_sample_loop(
model_fn,
(full_batch_size, 3, options["image_size"], options["image_size"]),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
model.del_cache()
# Show the output
return samples
##############################
# Upsample the 64x64 samples #
##############################
def upsampling_256(prompts, samples):
tokens = model_up.tokenizer.encode("".join(prompts))
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
tokens, options_up['text_ctx']
)
# Create the model conditioning dict.
model_kwargs = dict(
# Low-res image to upsample.
low_res=((samples + 1) * 127.5).round() / 127.5 - 1,
# Text tokens
tokens=th.tensor(
[tokens] * batch_size, device=device
),
mask=th.tensor(
[mask] * batch_size,
dtype=th.bool,
device=device,
),
)
# Sample from the base model.
model_up.del_cache()
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
up_samples = diffusion_up.ddim_sample_loop(
model_up,
up_shape,
noise=th.randn(up_shape, device=device) * upsample_temp,
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
model_up.del_cache()
# Show the output
return up_samples
# sampling 64x64 images
samples = sample_64(prompts)
# show_images(samples)
# upsample from 64x64 to 256x256
upsamples = upsampling_256(prompts, samples)
# show_images(upsamples)
out_img = upsamples[0].permute(1, 2, 0)
out_img = (out_img + 1) / 2
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
out_img = out_img.numpy()
return out_img
# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()
flags = {
"image_size": 128,
"num_channels": 192,
"num_res_blocks": 2,
"learn_sigma": True,
"use_scale_shift_norm": False,
"raw_unet": True,
"noise_schedule": "squaredcos_cap_v2",
"rescale_learned_sigmas": False,
"rescale_timesteps": False,
"num_classes": '2',
"dataset": "clevr_pos",
"use_fp16": has_cuda,
"timestep_respacing": '100'
}
for key, val in flags.items():
clevr_options[key] = val
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
clevr_model.convert_to_fp16()
clevr_model.to(th.device('cpu'))
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), th.device('cpu')))
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
def compose_clevr_objects(prompt, guidance_scale, steps):
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
for x in prompt.split('|')]
coordinates += [[-1, -1]] # add unconditional score label
batch_size = 1
clevr_options['timestep_respacing'] = str(int(steps))
_, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
def model_fn(x_t, ts, **kwargs):
half = x_t[:1]
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
model_out = clevr_model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
masks = kwargs.get('masks')
cond_eps = eps[masks].mean(dim=0, keepdim=True)
uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = th.cat([half_eps] * x_t.size(0), dim=0)
return th.cat([eps, rest], dim=1)
def sample(coordinates):
masks = [True] * (len(coordinates) - 1) + [False]
model_kwargs = dict(
y=th.tensor(coordinates, dtype=th.float, device=device),
masks=th.tensor(masks, dtype=th.bool, device=device)
)
samples = clevr_diffusion.p_sample_loop(
model_fn,
(len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
return samples
samples = sample(coordinates)
out_img = samples[0].permute(1, 2, 0)
out_img = (out_img + 1) / 2
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
out_img = out_img.numpy()
return out_img
def stable_diffusion_compose(prompt, scale, steps):
with autocast('cpu' if not th.cuda.is_available() else 'cuda'):
image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps)["sample"][0]
return image
def compose(prompt, version, guidance_scale, steps):
with th.no_grad():
if version == 'GLIDE':
clevr_model.to(cpu)
pipe.to(cpu)
model.to(device)
model_up.to(device)
return compose_language_descriptions(prompt, guidance_scale, steps)
elif version == 'Stable_Diffusion_1v_4':
clevr_model.to(cpu)
model.to(cpu)
model_up.to(cpu)
pipe.to(device)
return stable_diffusion_compose(prompt, guidance_scale, steps)
else:
pipe.to(cpu)
model.to(cpu)
model_up.to(cpu)
clevr_model.to(device)
return compose_clevr_objects(prompt, guidance_scale, steps)
examples_1 = 'a camel | a forest'
examples_2 = 'A blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
examples_4 = 'red trees | a blue house'
examples_5 = 'a white church | lightning in the background'
examples_6 = 'a camel | arctic'
examples_7 = 'A lake | A mountain | Cherry Blossoms next to the lake'
examples = [
[examples_7, 'Stable_Diffusion_1v_4', 15, 50],
[examples_5, 'Stable_Diffusion_1v_4', 15, 50],
[examples_4, 'Stable_Diffusion_1v_4', 20, 50],
[examples_6, 'Stable_Diffusion_1v_4', 15, 50],
[examples_1, 'GLIDE', 15, 100],
[examples_2, 'GLIDE', 15, 100],
[examples_3, 'CLEVR Objects', 10, 100]
]
import gradio as gr
title = 'Compositional Visual Generation with Composable Diffusion Models'
description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE/Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p><p><b>Note</b>: When using more steps, the results can improve.</p>'
iface = gr.Interface(compose,
inputs=[
"text",
gr.Radio(['Stable_Diffusion_1v_4', 'GLIDE', 'CLEVR Objects'], type="value", label='version'),
gr.Slider(2, 30),
gr.Slider(10, 200)
],
outputs='image',
title=title, description=description, examples=examples)
iface.launch()
|