Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -76,7 +76,10 @@ def show_images(batch: th.Tensor):
|
|
76 |
display(Image.fromarray(reshaped.numpy()))
|
77 |
|
78 |
|
79 |
-
def compose_language_descriptions(prompt, guidance_scale):
|
|
|
|
|
|
|
80 |
# @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
81 |
prompts = [x.strip() for x in prompt.split('|')]
|
82 |
|
@@ -240,12 +243,15 @@ clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
|
240 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
241 |
|
242 |
|
243 |
-
def compose_clevr_objects(prompt, guidance_scale):
|
244 |
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
|
245 |
for x in prompt.split('|')]
|
246 |
coordinates += [[-1, -1]] # add unconditional score label
|
247 |
batch_size = 1
|
248 |
|
|
|
|
|
|
|
249 |
def model_fn(x_t, ts, **kwargs):
|
250 |
half = x_t[:1]
|
251 |
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
|
@@ -281,24 +287,23 @@ def compose_clevr_objects(prompt, guidance_scale):
|
|
281 |
out_img = (out_img + 1) / 2
|
282 |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
283 |
out_img = out_img.numpy()
|
284 |
-
Image.fromarray(out_img).convert('RGB').save('test.png')
|
285 |
|
286 |
return out_img
|
287 |
|
288 |
|
289 |
-
def stable_diffusion_compose(prompt, scale):
|
290 |
with autocast('cpu' if not has_cuda else 'cuda'):
|
291 |
-
image = pipe(prompt, guidance_scale=scale)["sample"][0]
|
292 |
return image
|
293 |
|
294 |
|
295 |
-
def compose(prompt, version, guidance_scale):
|
296 |
if version == 'GLIDE':
|
297 |
-
return compose_language_descriptions(prompt, guidance_scale)
|
298 |
elif version == 'Stable_Diffusion_1v_4':
|
299 |
-
return stable_diffusion_compose(prompt, guidance_scale)
|
300 |
else:
|
301 |
-
return compose_clevr_objects(prompt, guidance_scale)
|
302 |
|
303 |
|
304 |
examples_1 = 'a camel | a forest'
|
@@ -309,20 +314,28 @@ examples_5 = 'a white church on a hill | birds flying around the church'
|
|
309 |
examples_6 = 'a boat in a desert | a pink sky'
|
310 |
examples_7 = 'mountains in the background | a blue sky | cows on a pasture'
|
311 |
examples = [
|
312 |
-
[examples_7, 'Stable_Diffusion_1v_4', 10],
|
313 |
-
[examples_4, 'Stable_Diffusion_1v_4', 10],
|
314 |
-
[examples_5, 'Stable_Diffusion_1v_4', 10],
|
315 |
-
[examples_6, 'Stable_Diffusion_1v_4', 10],
|
316 |
-
[examples_1, 'GLIDE', 10],
|
317 |
-
[examples_2, 'GLIDE', 10],
|
318 |
-
[examples_3, 'CLEVR Objects', 10]
|
|
|
319 |
|
320 |
import gradio as gr
|
321 |
|
322 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
323 |
-
description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE/Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p>'
|
324 |
-
|
325 |
-
iface = gr.Interface(compose,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
title=title, description=description, examples=examples)
|
327 |
|
328 |
iface.launch()
|
|
|
76 |
display(Image.fromarray(reshaped.numpy()))
|
77 |
|
78 |
|
79 |
+
def compose_language_descriptions(prompt, guidance_scale, steps):
|
80 |
+
options['timestep_respacing'] = str(steps)
|
81 |
+
_, diffusion = create_model_and_diffusion(**options)
|
82 |
+
|
83 |
# @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
84 |
prompts = [x.strip() for x in prompt.split('|')]
|
85 |
|
|
|
243 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
244 |
|
245 |
|
246 |
+
def compose_clevr_objects(prompt, guidance_scale, steps):
|
247 |
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
|
248 |
for x in prompt.split('|')]
|
249 |
coordinates += [[-1, -1]] # add unconditional score label
|
250 |
batch_size = 1
|
251 |
|
252 |
+
clevr_options['timestep_respacing'] = str(int(steps))
|
253 |
+
_, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
254 |
+
|
255 |
def model_fn(x_t, ts, **kwargs):
|
256 |
half = x_t[:1]
|
257 |
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
|
|
|
287 |
out_img = (out_img + 1) / 2
|
288 |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
289 |
out_img = out_img.numpy()
|
|
|
290 |
|
291 |
return out_img
|
292 |
|
293 |
|
294 |
+
def stable_diffusion_compose(prompt, scale, steps):
|
295 |
with autocast('cpu' if not has_cuda else 'cuda'):
|
296 |
+
image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps)["sample"][0]
|
297 |
return image
|
298 |
|
299 |
|
300 |
+
def compose(prompt, version, guidance_scale, steps):
|
301 |
if version == 'GLIDE':
|
302 |
+
return compose_language_descriptions(prompt, guidance_scale, steps)
|
303 |
elif version == 'Stable_Diffusion_1v_4':
|
304 |
+
return stable_diffusion_compose(prompt, guidance_scale, steps)
|
305 |
else:
|
306 |
+
return compose_clevr_objects(prompt, guidance_scale, steps)
|
307 |
|
308 |
|
309 |
examples_1 = 'a camel | a forest'
|
|
|
314 |
examples_6 = 'a boat in a desert | a pink sky'
|
315 |
examples_7 = 'mountains in the background | a blue sky | cows on a pasture'
|
316 |
examples = [
|
317 |
+
[examples_7, 'Stable_Diffusion_1v_4', 10, 50],
|
318 |
+
[examples_4, 'Stable_Diffusion_1v_4', 10, 50],
|
319 |
+
[examples_5, 'Stable_Diffusion_1v_4', 10, 50],
|
320 |
+
[examples_6, 'Stable_Diffusion_1v_4', 10, 50],
|
321 |
+
[examples_1, 'GLIDE', 10, 100],
|
322 |
+
[examples_2, 'GLIDE', 10, 100],
|
323 |
+
[examples_3, 'CLEVR Objects', 10, 100]
|
324 |
+
]
|
325 |
|
326 |
import gradio as gr
|
327 |
|
328 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
329 |
+
description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE/Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p><p><b>Note</b>: When using more steps, the results can improve.</p>'
|
330 |
+
|
331 |
+
iface = gr.Interface(compose,
|
332 |
+
inputs=[
|
333 |
+
"text",
|
334 |
+
gr.Radio(['Stable_Diffusion_1v_4', 'GLIDE', 'CLEVR Objects'], type="value", label='version'),
|
335 |
+
gr.Slider(2, 15),
|
336 |
+
gr.Slider(10, 200)
|
337 |
+
],
|
338 |
+
outputs='image',
|
339 |
title=title, description=description, examples=examples)
|
340 |
|
341 |
iface.launch()
|