File size: 9,368 Bytes
63d903a
e977112
 
0b607fb
e977112
3890ae0
e977112
 
 
 
 
 
 
2594602
e977112
81c84f4
64581a6
e977112
 
a7533b2
b4dffd4
 
 
4591c38
 
 
b4dffd4
 
84ed5b1
 
 
 
 
 
 
 
491e7e1
 
 
 
 
 
3890ae0
 
9b9a599
8b5e7fa
e977112
 
 
 
 
 
 
 
 
 
3a4edb7
e977112
 
 
 
 
8b5e7fa
3a4edb7
e977112
 
0af92be
8df9cbb
8b5e7fa
e977112
 
 
 
3a4edb7
8df9cbb
 
 
 
 
 
ef10a65
8df9cbb
3a4edb7
e977112
 
491e7e1
0af92be
e977112
 
aeb79bf
0af92be
aeb79bf
19fbf72
 
aeb79bf
 
 
19fbf72
 
e977112
 
aeb79bf
19fbf72
 
8b5e7fa
3890ae0
 
e977112
8b5e7fa
 
 
 
 
e977112
3890ae0
 
3436f48
993261b
 
8b5e7fa
e977112
491e7e1
 
8df9cbb
491e7e1
 
 
8df9cbb
491e7e1
 
8df9cbb
491e7e1
 
 
 
e977112
bd71ef9
e977112
 
e1a8672
593de4e
 
e977112
84ed5b1
 
 
 
 
 
 
 
 
593de4e
 
15f3dd6
 
491e7e1
0af92be
491e7e1
 
66a60a3
15f3dd6
 
5ac8c2c
15f3dd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e7fa
e977112
 
 
 
 
b4dffd4
 
149b538
b4dffd4
d9bca78
2fd4939
aeb79bf
2fd4939
3a4edb7
c1f06dd
2fd4939
 
c6f42da
2fd4939
 
 
c6f42da
2fd4939
 
 
 
 
 
 
 
 
993261b
e977112
 
 
197303a
204d06f
2fd4939
b4dffd4
2594602
480bd35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import logging

# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-70B-Instruct"
]

MODEL_TOKEN_LIMITS = {
    "mistralai/Mistral-7B-Instruct-v0.3": 32768,
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
    "mistralai/Mistral-Nemo-Instruct-2407": 32768,
    "meta-llama/Meta-Llama-3.1-8B-Instruct": 8192,
    "meta-llama/Meta-Llama-3.1-70B-Instruct": 8192,
}

DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured, factual."""

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )

def chatbot_interface(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
    if not message.strip():
        return "", history

    history = history + [(message, "")]

    try:
        for response in respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
            history[-1] = (message, response)
            yield history
    except gr.CancelledError:
        yield history
    except Exception as e:
        logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
        history[-1] = (message, f"An unexpected error occurred: {str(e)}")
        yield history

def retry_last_response(system_prompt, history, model, temperature, num_calls, use_embeddings):
    if not history:
        return history
    
    last_user_msg = history[-1][0]
    history = history[:-1]  # Remove the last response
    
    return chatbot_interface(last_user_msg, system_prompt, history, model, temperature, num_calls, use_embeddings)

def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Use Embeddings: {use_embeddings}")
    logging.info(f"System Prompt: {system_prompt}")

    try:
        full_response = ""
        for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings, system_prompt=system_prompt):
            full_response += main_content
            new_history = history + [(message, full_response)]
            yield new_history
        
        if sources:
            full_response += f"\n\nSources:\n{sources}"
            new_history = history + [(message, full_response)]
            yield new_history
    except Exception as e:
        logging.error(f"Error with {model}: {str(e)}")
        error_message = f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
        new_history = history + [(message, error_message)]
        yield new_history

def create_web_search_vectors(search_results):
    embed = get_embeddings()
    
    documents = []
    for result in search_results:
        if 'body' in result:
            content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
            documents.append(Document(page_content=content, metadata={"source": result['href']}))
    
    return FAISS.from_documents(documents, embed)

def get_response_with_search(query, model, system_prompt=DEFAULT_SYSTEM_PROMPT, num_calls=3, temperature=0.2, use_embeddings=True):
    logging.info(f"get_response_with_search - Query: {query}")
    logging.info(f"get_response_with_search - System Prompt: {system_prompt}")
    search_results = duckduckgo_search(query)
    
    if use_embeddings:
        web_search_database = create_web_search_vectors(search_results)
        
        if not web_search_database:
            yield "No web search results available. Please try again.", ""
            return
        
        retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
        relevant_docs = retriever.get_relevant_documents(query)
        
        context = "\n".join([doc.page_content for doc in relevant_docs])
    else:
        context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])

    prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    # Use Hugging Face API
    client = InferenceClient(model, token=huggingface_token)
    
    # Calculate input tokens (this is an approximation, you might need a more accurate method)
    input_tokens = len(prompt.split())
    
    # Get the token limit for the current model
    model_token_limit = MODEL_TOKEN_LIMITS.get(model, 8192)  # Default to 8192 if model not found
    
    # Calculate max_new_tokens
    max_new_tokens = min(model_token_limit - input_tokens, 4096)  # Cap at 4096 to be safe
    
    main_content = ""
    for i in range(num_calls):
        try:
            response = client.chat_completion(
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": prompt}
                ],
                max_tokens=max_new_tokens,
                temperature=temperature,
                stream=False,
                top_p=0.8,
            )
            
            # Log the raw response for debugging
            logging.info(f"Raw API response: {response}")
            
            # Check if the response is a string (which might be an error message)
            if isinstance(response, str):
                logging.error(f"API returned an unexpected string response: {response}")
                yield f"An error occurred: {response}", ""
                return
            
            # If it's not a string, assume it's the expected object structure
            if hasattr(response, 'choices') and response.choices:
                for choice in response.choices:
                    if hasattr(choice, 'message') and hasattr(choice.message, 'content'):
                        chunk = choice.message.content
                        main_content += chunk
                        yield main_content, ""  # Yield partial main content without sources
            else:
                logging.error(f"Unexpected response structure: {response}")
                yield "An unexpected error occurred. Please try again.", ""
                
        except Exception as e:
            logging.error(f"Error in API call: {str(e)}")
            yield f"An error occurred: {str(e)}", ""
            return

def vote(data: gr.LikeData):
    if data.liked:
        print(f"You upvoted this response: {data.value}")
    else:
        print(f"You downvoted this response: {data.value}")

css = """
/* Fine-tune chatbox size */
"""

demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        gr.Textbox(label="System Prompt", lines=5, value=DEFAULT_SYSTEM_PROMPT),
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
        gr.Checkbox(label="Use Embeddings", value=False),
    ],
    title="AI-powered Web Search Assistant",
    description="Ask questions and get answers from web search results.",
    theme=gr.Theme.from_hub("allenai/gradio-theme"),
    css=css,
    examples=[
        ["What are the latest developments in artificial intelligence?"],
        ["Can you explain the basics of quantum computing?"],
        ["What are the current global economic trends?"]
    ],
    cache_examples=False,
    analytics_enabled=False,
    textbox=gr.Textbox(placeholder="Ask a question", container=False, scale=7),
    chatbot=gr.Chatbot(  
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        height=400
    )
)

if __name__ == "__main__":
    demo.launch(share=True)