Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,18 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
-
import
|
4 |
-
import time
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain.vectorstores import FAISS
|
9 |
from langchain.schema import Document
|
10 |
from duckduckgo_search import DDGS
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
from functools import lru_cache
|
13 |
-
from tenacity import retry, stop_after_attempt, wait_fixed
|
14 |
-
|
15 |
-
# Load environment variables
|
16 |
-
load_dotenv()
|
17 |
|
18 |
# Configure logging
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
-
logger = logging.getLogger(__name__)
|
21 |
|
22 |
# Environment variables and configurations
|
23 |
-
|
24 |
-
logger.info(f"Using Hugging Face token: {HUGGINGFACE_TOKEN[:4]}...{HUGGINGFACE_TOKEN[-4:] if HUGGINGFACE_TOKEN else 'Not Set'}")
|
25 |
|
26 |
MODELS = [
|
27 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
@@ -33,8 +24,7 @@ MODELS = [
|
|
33 |
"google/gemma-2-27b-it"
|
34 |
]
|
35 |
|
36 |
-
|
37 |
-
|
38 |
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
|
39 |
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
|
40 |
Providing comprehensive and accurate information based on web search results is essential.
|
@@ -42,47 +32,36 @@ Your goal is to synthesize the given context into a coherent and detailed respon
|
|
42 |
Please ensure that your response is well-structured and factual.
|
43 |
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
|
44 |
|
45 |
-
class WebSearcher:
|
46 |
-
def __init__(self):
|
47 |
-
self.ddgs = DDGS()
|
48 |
-
|
49 |
-
@lru_cache(maxsize=100)
|
50 |
-
def search(self, query, max_results=5):
|
51 |
-
try:
|
52 |
-
results = list(self.ddgs.text(query, max_results=max_results))
|
53 |
-
logger.info(f"Search completed for query: {query}")
|
54 |
-
return results
|
55 |
-
except Exception as e:
|
56 |
-
logger.error(f"Error during DuckDuckGo search: {str(e)}")
|
57 |
-
return []
|
58 |
-
|
59 |
-
@lru_cache(maxsize=1)
|
60 |
def get_embeddings():
|
61 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def create_web_search_vectors(search_results):
|
64 |
embed = get_embeddings()
|
65 |
-
documents = [
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
]
|
72 |
-
logger.info(f"Created vectors for {len(documents)} search results.")
|
73 |
return FAISS.from_documents(documents, embed)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
return client.chat_completion(**api_params)
|
78 |
-
|
79 |
-
def get_response_with_search(query, system_prompt, model, use_embeddings, history, num_calls=3, temperature=0.2):
|
80 |
-
searcher = WebSearcher()
|
81 |
-
search_results = searcher.search(query)
|
82 |
|
83 |
if not search_results:
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
sources = [result['href'] for result in search_results if 'href' in result]
|
88 |
source_list_str = "\n".join(sources)
|
@@ -95,80 +74,105 @@ def get_response_with_search(query, system_prompt, model, use_embeddings, histor
|
|
95 |
else:
|
96 |
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
97 |
|
98 |
-
|
99 |
|
100 |
-
|
101 |
-
user_message = f"""Chat history:
|
102 |
-
{chat_history}
|
103 |
-
|
104 |
-
Using the following context from web search results:
|
105 |
{context}
|
106 |
|
107 |
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
108 |
|
109 |
-
client = InferenceClient(model, token=
|
110 |
full_response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
try:
|
112 |
-
for
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
elif hasattr(response, 'content'):
|
137 |
-
full_response += response.content
|
138 |
-
else:
|
139 |
-
logger.error(f"Unexpected response format from the model: {type(response)}")
|
140 |
-
return "Unexpected response format from the model. Please try again.", ""
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
return f"An error occurred while processing your request: {str(e)}", ""
|
149 |
|
150 |
if not full_response:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
try:
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
except Exception as e:
|
170 |
-
|
171 |
-
|
172 |
|
173 |
css = """
|
174 |
/* Fine-tune chatbox size */
|
@@ -182,6 +186,7 @@ css = """
|
|
182 |
}
|
183 |
"""
|
184 |
|
|
|
185 |
def create_gradio_interface():
|
186 |
custom_placeholder = "Enter your question here for web search."
|
187 |
|
@@ -232,4 +237,4 @@ def create_gradio_interface():
|
|
232 |
|
233 |
if __name__ == "__main__":
|
234 |
demo = create_gradio_interface()
|
235 |
-
demo.launch(share=True)
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
import asyncio
|
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain.schema import Document
|
9 |
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
13 |
|
14 |
# Environment variables and configurations
|
15 |
+
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
16 |
|
17 |
MODELS = [
|
18 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
24 |
"google/gemma-2-27b-it"
|
25 |
]
|
26 |
|
27 |
+
# Default system message template
|
|
|
28 |
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
|
29 |
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
|
30 |
Providing comprehensive and accurate information based on web search results is essential.
|
|
|
32 |
Please ensure that your response is well-structured and factual.
|
33 |
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def get_embeddings():
|
36 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
37 |
|
38 |
+
def duckduckgo_search(query):
|
39 |
+
try:
|
40 |
+
with DDGS() as ddgs:
|
41 |
+
results = ddgs.text(query, max_results=5)
|
42 |
+
logging.info(f"Search completed for query: {query}")
|
43 |
+
return results
|
44 |
+
except Exception as e:
|
45 |
+
logging.error(f"Error during DuckDuckGo search: {str(e)}")
|
46 |
+
return []
|
47 |
+
|
48 |
def create_web_search_vectors(search_results):
|
49 |
embed = get_embeddings()
|
50 |
+
documents = []
|
51 |
+
for result in search_results:
|
52 |
+
if 'body' in result:
|
53 |
+
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
|
54 |
+
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
55 |
+
logging.info(f"Created vectors for {len(documents)} search results.")
|
|
|
|
|
56 |
return FAISS.from_documents(documents, embed)
|
57 |
|
58 |
+
async def get_response_with_search(query, system_prompt, model, use_embeddings, history=None, num_calls=3, temperature=0.2):
|
59 |
+
search_results = duckduckgo_search(query)
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if not search_results:
|
62 |
+
logging.warning(f"No web search results found for query: {query}")
|
63 |
+
yield "No web search results available. Please try again.", ""
|
64 |
+
return
|
65 |
|
66 |
sources = [result['href'] for result in search_results if 'href' in result]
|
67 |
source_list_str = "\n".join(sources)
|
|
|
74 |
else:
|
75 |
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
76 |
|
77 |
+
logging.info(f"Context created for query: {query}")
|
78 |
|
79 |
+
user_message = f"""Using the following context from web search results:
|
|
|
|
|
|
|
|
|
80 |
{context}
|
81 |
|
82 |
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
83 |
|
84 |
+
client = InferenceClient(model, token=huggingface_token)
|
85 |
full_response = ""
|
86 |
+
|
87 |
+
messages = [
|
88 |
+
{"role": "system", "content": system_prompt},
|
89 |
+
{"role": "user", "content": user_message}
|
90 |
+
]
|
91 |
+
|
92 |
+
# Include chat history if provided
|
93 |
+
if history:
|
94 |
+
messages = history + messages
|
95 |
+
|
96 |
try:
|
97 |
+
for call in range(num_calls):
|
98 |
+
try:
|
99 |
+
for response in client.chat_completion(
|
100 |
+
messages=messages,
|
101 |
+
max_tokens=6000,
|
102 |
+
temperature=temperature,
|
103 |
+
stream=True,
|
104 |
+
top_p=0.8,
|
105 |
+
):
|
106 |
+
if isinstance(response, dict) and "choices" in response:
|
107 |
+
for choice in response["choices"]:
|
108 |
+
if "delta" in choice and "content" in choice["delta"]:
|
109 |
+
chunk = choice["delta"]["content"]
|
110 |
+
full_response += chunk
|
111 |
+
yield full_response, ""
|
112 |
+
else:
|
113 |
+
logging.error("Unexpected response format or missing attributes in the response object.")
|
114 |
+
break
|
115 |
+
except Exception as e:
|
116 |
+
logging.error(f"Error in API call {call + 1}: {str(e)}")
|
117 |
+
if "422 Client Error" in str(e):
|
118 |
+
logging.warning("Received 422 Client Error. Adjusting request parameters.")
|
119 |
+
# You might want to adjust parameters here, e.g., reduce max_tokens
|
120 |
+
yield f"An error occurred during API call {call + 1}. Retrying...", ""
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# Add a small delay between API calls
|
123 |
+
await asyncio.sleep(1) # 1 second delay
|
124 |
+
|
125 |
+
except asyncio.CancelledError:
|
126 |
+
logging.warning("The operation was cancelled.")
|
127 |
+
yield "The operation was cancelled. Please try again.", ""
|
|
|
128 |
|
129 |
if not full_response:
|
130 |
+
logging.warning("No response generated from the model")
|
131 |
+
yield "No response generated from the model.", ""
|
132 |
+
|
133 |
+
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
|
134 |
+
|
135 |
+
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
136 |
+
logging.info(f"User Query: {message}")
|
137 |
+
logging.info(f"Model Used: {model}")
|
138 |
+
logging.info(f"Temperature: {temperature}")
|
139 |
+
logging.info(f"Number of API Calls: {num_calls}")
|
140 |
+
logging.info(f"Use Embeddings: {use_embeddings}")
|
141 |
+
logging.info(f"System Prompt: {system_prompt}")
|
142 |
+
|
143 |
+
# Convert gradio history to the format expected by get_response_with_search
|
144 |
+
chat_history = []
|
145 |
+
for human, assistant in history:
|
146 |
+
chat_history.append({"role": "user", "content": human})
|
147 |
+
if assistant:
|
148 |
+
chat_history.append({"role": "assistant", "content": assistant})
|
149 |
|
150 |
try:
|
151 |
+
full_response = ""
|
152 |
+
async for main_content, sources in get_response_with_search(
|
153 |
+
message,
|
154 |
+
system_prompt,
|
155 |
+
model,
|
156 |
+
use_embeddings,
|
157 |
+
history=chat_history,
|
158 |
+
num_calls=num_calls,
|
159 |
+
temperature=temperature
|
160 |
+
):
|
161 |
+
# Yield only the new content
|
162 |
+
new_content = main_content[len(full_response):]
|
163 |
+
full_response = main_content
|
164 |
+
yield new_content
|
165 |
+
|
166 |
+
# Yield the sources as a separate message
|
167 |
+
if sources:
|
168 |
+
yield f"\n\nSources:\n{sources}"
|
169 |
+
|
170 |
+
except asyncio.CancelledError:
|
171 |
+
logging.warning("The operation was cancelled.")
|
172 |
+
yield "The operation was cancelled. Please try again."
|
173 |
except Exception as e:
|
174 |
+
logging.error(f"Error in respond function: {str(e)}")
|
175 |
+
yield f"An error occurred: {str(e)}"
|
176 |
|
177 |
css = """
|
178 |
/* Fine-tune chatbox size */
|
|
|
186 |
}
|
187 |
"""
|
188 |
|
189 |
+
# Gradio interface setup
|
190 |
def create_gradio_interface():
|
191 |
custom_placeholder = "Enter your question here for web search."
|
192 |
|
|
|
237 |
|
238 |
if __name__ == "__main__":
|
239 |
demo = create_gradio_interface()
|
240 |
+
demo.launch(share=True)
|