Spaces:
Paused
Paused
File size: 12,293 Bytes
7905879 0ae8ad0 641e216 8c869bf 641e216 0ae8ad0 0e096ce 641e216 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 641e216 0ae8ad0 1b1598d 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 cf0f4c3 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 7905879 0ae8ad0 cf0f4c3 0ae8ad0 7905879 0ae8ad0 7905879 1b1598d 7905879 9dfa0c6 7905879 0ae8ad0 1b1598d 8c869bf 0ae8ad0 8c869bf 0ae8ad0 1b1598d 0ae8ad0 1b1598d 0ae8ad0 cf0f4c3 0ae8ad0 0e096ce 0ae8ad0 1b1598d 0ae8ad0 1b1598d 8c869bf 0ae8ad0 1b1598d 0ae8ad0 8c869bf 641e216 7905879 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os, numpy as np
from typing import List, Tuple, Dict, Any
from PIL import Image
import torch
import torch.nn.functional as F
import gradio as gr
from datasets import load_dataset
from sklearn.neighbors import NearestNeighbors
# =============== CONFIG ===============
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Embeddings backbone
OPENCLIP_BACKBONE = "ViT-H-14"
OPENCLIP_PRETRAIN = "laion2B-s32B-b79K" # laion/CLIP-ViT-H-14-laion2B-s32B-b79K
# Dataset (THIS IS YOUR "MODEL" SOURCE NOW)
DATASET_NAME = "tukey/human_face_emotions_roboflow"
DATASET_SPLIT = "train"
INDEX_SIZE = int(os.getenv("INDEX_SIZE", 400)) # כמה דוגמאות מהדאטהסט לאינדוקס
TOPK_NEAREST = 5 # להצגה בגלריה
KNN_K_FOR_CLASS = 25 # לשקלול רגשות
# Optional SD variations
USE_SD_VARIATIONS = True
SD_MODEL = "lambdalabs/sd-image-variations-diffusers"
# =====================================
# ---------- Load OpenCLIP for image embeddings ----------
try:
import open_clip
_openclip_model, _, _openclip_preprocess = open_clip.create_model_and_transforms(
OPENCLIP_BACKBONE, pretrained=OPENCLIP_PRETRAIN
)
_openclip_model = _openclip_model.to(DEVICE).eval()
except Exception as e:
raise RuntimeError(
f"Failed to load OpenCLIP ({OPENCLIP_BACKBONE} / {OPENCLIP_PRETRAIN}). "
f"Install 'open_clip_torch' and verify CUDA if available. Error: {e}"
)
@torch.inference_mode()
def embed_image(img: Image.Image) -> np.ndarray:
img = img.convert("RGB")
tens = _openclip_preprocess(img).unsqueeze(0).to(DEVICE)
feats = _openclip_model.encode_image(tens)
feats = F.normalize(feats, dim=-1).squeeze(0).detach().cpu().numpy().astype(np.float32)
return feats # shape [D]
# ---------- Labels & stress mapping ----------
EMO_MAP = {
"anger": "anger", "angry": "anger",
"disgust": "disgust",
"fear": "fear",
"happy": "happy", "happiness": "happy",
"neutral": "neutral", "calm": "neutral",
"sad": "sad", "sadness": "sad",
"surprise": "surprise",
"contempt": "contempt",
}
ALLOWED = set(EMO_MAP.values()) # whitelist קשיח
STRESS_WEIGHTS = {
"anger": 0.95, "fear": 0.90, "disgust": 0.70, "sad": 0.80,
"surprise": 0.55, "neutral": 0.30, "contempt": 0.65, "happy": 0.10,
}
def _bucket(p: float) -> str:
return "Low" if p < 33 else ("Medium" if p < 66 else "High")
# ---------- Load dataset & build index ----------
def _extract_label(rec: Dict[str, Any]) -> str:
# התאמה לשדות אפשריים בדאטהסט
if "label" in rec and rec["label"]:
raw = rec["label"]
if isinstance(raw, (list, tuple)): raw = raw[0]
return str(raw).strip().lower()
if "labels" in rec and rec["labels"]:
raw = rec["labels"][0]
return str(raw).strip().lower()
if "qa" in rec and rec["qa"] and isinstance(rec["qa"], list):
qa0 = rec["qa"][0]
if qa0 and "answer" in qa0:
return str(qa0["answer"]).strip().lower()
return ""
def _map_allowed(lbl: str) -> str:
# ממפה לשם סטנדרטי, ומסנן החוצה לא מוכרות
mapped = EMO_MAP.get(lbl, lbl)
return mapped if mapped in ALLOWED else "" # "" => drop
def _load_images_labels_for_index(n: int) -> Tuple[List[Image.Image], List[str]]:
ds = load_dataset(DATASET_NAME, split=DATASET_SPLIT)
imgs, labels = [], []
n = min(n, len(ds))
for i in range(n):
rec = ds[i]
im = rec.get("image")
if not isinstance(im, Image.Image):
continue
raw_lbl = _extract_label(rec)
mapped = _map_allowed(raw_lbl)
if not mapped:
continue # זורק תוויות לא מותרות/ריקות
imgs.append(im.copy())
labels.append(mapped)
return imgs, labels
def build_index(imgs: List[Image.Image]) -> Tuple[NearestNeighbors, np.ndarray]:
vecs = [embed_image(im) for im in imgs]
X = np.stack(vecs, axis=0)
nn = NearestNeighbors(metric="cosine", n_neighbors=min(max(TOPK_NEAREST, KNN_K_FOR_CLASS), len(imgs)))
nn.fit(X)
return nn, X
print("Loading dataset & building index (first time only)...")
DATASET_IMAGES, DATASET_LABELS = _load_images_labels_for_index(INDEX_SIZE)
if len(DATASET_IMAGES) == 0:
raise RuntimeError("No images with allowed labels were loaded from the dataset.")
NN_MODEL, EMB_MATRIX = build_index(DATASET_IMAGES)
print(f"Index ready with {len(DATASET_IMAGES)} images (labels={sorted(set(DATASET_LABELS))}).")
# ---------- Nearest & KNN-based classification ----------
def nearest5(pil_img: Image.Image) -> List[Tuple[Image.Image, str]]:
q = embed_image(pil_img).reshape(1, -1)
n = min(5, len(DATASET_IMAGES))
dists, idxs = NN_MODEL.kneighbors(q, n_neighbors=n)
out = []
for rank, (dist, idx) in enumerate(zip(dists[0], idxs[0]), start=1):
sim = max(0.0, 1.0 - float(dist)) # cosine distance -> similarity
im = DATASET_IMAGES[int(idx)]
caption = f"#{rank} sim={sim:.3f} idx={int(idx)}"
out.append((im, caption))
return out
def knn_probs(pil_img: Image.Image, k: int = KNN_K_FOR_CLASS) -> Dict[str, float]:
q = embed_image(pil_img).reshape(1, -1)
k = min(k, len(DATASET_IMAGES))
dists, idxs = NN_MODEL.kneighbors(q, n_neighbors=k)
sims = 1.0 - dists[0] # higher is better
sims = np.maximum(sims, 0.0)
votes: Dict[str, float] = {}
for sim, idx in zip(sims, idxs[0]):
lbl = DATASET_LABELS[int(idx)]
if lbl in ALLOWED:
votes[lbl] = votes.get(lbl, 0.0) + float(sim)
Z = sum(votes.values()) or 1.0
return {k: v / Z for k, v in votes.items()}
def emotions_top3(pil_img: Image.Image) -> List[List[Any]]:
probs = knn_probs(pil_img)
items = sorted(probs.items(), key=lambda kv: kv[1], reverse=True)[:3]
table = []
for i, (emo, p) in enumerate(items, start=1):
table.append([i, emo, round(100.0 * p, 2)])
# משלימים אם יש פחות מ-3
seen = {r[1] for r in table}
for fill in ["neutral", "other"]:
if len(table) >= 3: break
if fill in ALLOWED and fill not in seen:
table.append([len(table)+1, fill, 0.0])
return table
def stress_index(pil_img: Image.Image) -> Tuple[str, float]:
probs = knn_probs(pil_img)
raw = sum(probs.get(k, 0.0) * STRESS_WEIGHTS.get(k, 0.5) for k in ALLOWED)
pct = max(0.0, min(100.0, 100.0 * raw))
return f"{pct:.1f}% ({_bucket(pct)})", pct
# ---------- Optional: SD image variations ----------
sd_pipe = None
if USE_SD_VARIATIONS:
try:
from diffusers import StableDiffusionImageVariationPipeline
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
SD_MODEL, torch_dtype=torch.float32
)
sd_pipe = sd_pipe.to(DEVICE)
except Exception as e:
print(f"[WARN] Could not load {SD_MODEL}. Generation disabled. Error: {e}")
sd_pipe = None
def generate_one_variation(pil_img: Image.Image, steps: int) -> Image.Image:
if sd_pipe is None:
raise gr.Error("Image-variation pipeline is not available on this Space.")
pil_img = pil_img.convert("RGB")
out = sd_pipe(pil_img, guidance_scale=3.0, num_inference_steps=int(steps)).images[0]
return out
# ===================== GRADIO UI =====================
CSS = ".box { border: 1px solid #e5e7eb; border-radius: 12px; padding: 10px; }"
with gr.Blocks(title="Face Emotion & Stress Analyzer — KNN over tukey dataset", css=CSS, fill_height=False) as demo:
gr.Markdown(
"### Face Emotion & Stress Analyzer — **KNN over `tukey/human_face_emotions_roboflow`**\n"
"- Embeddings: **laion/CLIP-ViT-H-14-laion2B-s32B-b79K** (open_clip)\n"
"- Emotion model: **KNN using labels from `tukey/human_face_emotions_roboflow`**\n"
"- Optional SD variations: **lambdalabs/sd-image-variations-diffusers** (1 synthetic only)\n"
"- Right column shows nearest 5 images from the dataset (clickable)."
)
# ---- Row 1: upload + (top3_emotion_original | stress_original) ----
with gr.Row():
with gr.Column(scale=2):
upload_image = gr.Image(label="Upload face image", type="pil")
with gr.Column(scale=1):
top3_emotion_original = gr.Dataframe(
headers=["Rank", "Emotion", "Confidence (%)"],
datatype=["number", "str", "number"],
interactive=False, label="Top-3 emotions (original image)",
value=[]
)
with gr.Column(scale=1):
stress_original = gr.Label(label="Stress index (original)")
gr.Markdown("#### Analyze (no synthetics)")
with gr.Row(equal_height=False):
# ---------- LEFT COLUMN ----------
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("**gen_variations_control** — generate only **one** synthetic")
steps = gr.Slider(8, 40, value=12, step=1, label="Diffusion steps (higher=slower/better)")
gen_btn = gr.Button("Generate 1 synthetic", variant="primary")
picked_synth = gr.Image(label="Synthetic preview")
top3_emotion_synth = gr.Dataframe(
headers=["Rank", "Emotion", "Confidence (%)"],
datatype=["number", "str", "number"],
interactive=False, label="top3_emotion_synth",
value=[]
)
stress_synth = gr.Label(label="stress_synth")
# ---------- RIGHT COLUMN ----------
with gr.Column(scale=1):
nearest_images_5 = gr.Gallery(
label="nearest_images_5 (1-click on 5 examples)",
columns=5, rows=1, height=200, allow_preview=False, show_label=True
)
tops_emotion_nearest = gr.Dataframe(
headers=["Rank", "Emotion", "Confidence (%)"],
datatype=["number", "str", "number"],
interactive=False, label="tops_emotion_nearest_image",
value=[]
)
stress_nearest = gr.Label(label="stress_nearest_image")
# --------- Hidden states ---------
gallery_images_state = gr.State([]) # store PILs
gallery_index_state = gr.State([]) # store dataset indexes (ints)
# ================= Callbacks =================
def on_upload(img: Image.Image):
if img is None:
return gr.update(), gr.update(value=""), [], [], []
# original
t3 = emotions_top3(img)
s_label, _ = stress_index(img)
# nearest gallery
gal = nearest5(img) # list[(PIL, caption)]
gal_imgs = [g[0] for g in gal]
gal_caps = [g[1] for g in gal]
gallery = [(im, cap) for im, cap in zip(gal_imgs, gal_caps)]
return t3, s_label, gallery, gal_imgs, list(range(len(gal_imgs)))
upload_image.change(
fn=on_upload,
inputs=[upload_image],
outputs=[top3_emotion_original, stress_original, nearest_images_5, gallery_images_state, gallery_index_state]
)
def on_gallery_select(evt: gr.SelectData, imgs: List[Image.Image], idxs: List[int]):
if imgs is None or not imgs:
return [], ""
i = int(evt.index) if evt is not None else 0
i = max(0, min(i, len(imgs)-1))
im = imgs[i]
t3 = emotions_top3(im)
s_label, _ = stress_index(im)
return t3, s_label
nearest_images_5.select(
fn=on_gallery_select,
inputs=[gallery_images_state, gallery_index_state],
outputs=[tops_emotion_nearest, stress_nearest]
)
def on_generate(img: Image.Image, steps_val: int):
if img is None:
raise gr.Error("Upload an image first.")
if sd_pipe is None:
raise gr.Error("Synthetic generation is disabled on this Space.")
synth = generate_one_variation(img, steps_val)
t3 = emotions_top3(synth)
s_label, _ = stress_index(synth)
return synth, t3, s_label
gen_btn.click(
fn=on_generate,
inputs=[upload_image, steps],
outputs=[picked_synth, top3_emotion_synth, stress_synth]
)
if __name__ == "__main__":
demo.launch() |