Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from sklearn.neighbors import NearestNeighbors
|
|
| 13 |
from diffusers import StableDiffusionImageVariationPipeline
|
| 14 |
|
| 15 |
# -----------------------------
|
| 16 |
-
# Config (CPU-friendly
|
| 17 |
# -----------------------------
|
| 18 |
DATASET_ID = "tukey/human_face_emotions_roboflow"
|
| 19 |
EMB_MODEL_NAME = "ViT-H-14" # open_clip model name
|
|
@@ -25,18 +25,18 @@ EMB_MEMMAP_PATH = CACHE_DIR / "clip_vith14_laion2b.float32.memmap"
|
|
| 25 |
LABELS_MEMMAP_PATH = CACHE_DIR / "labels.U32.memmap"
|
| 26 |
KNN_META_PATH = CACHE_DIR / "knn_meta.json"
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
INDEX_MAX_DEFAULT = 80
|
| 30 |
BATCH_SIZE_DEFAULT = 32
|
| 31 |
N_SYN_DEFAULT = 3
|
| 32 |
STEPS_DEFAULT = 12
|
| 33 |
GUIDANCE_SCALES = [2.5, 3.0, 3.5, 4.0]
|
| 34 |
-
NUM_SYN_TO_SHOW = 5
|
| 35 |
|
| 36 |
DEVICE = "cuda" if torch.cuda.is_available() else ("mps" if hasattr(torch.backends, "mps") and torch.backends.mps.is_available() else "cpu")
|
| 37 |
|
| 38 |
# -----------------------------
|
| 39 |
-
# Canonical
|
| 40 |
# -----------------------------
|
| 41 |
CANON = {"anger","disgust","fear","happy","neutral","sad","surprise","contempt"}
|
| 42 |
CANON_MAP = {
|
|
@@ -87,7 +87,7 @@ def _load_openclip():
|
|
| 87 |
def _fit_knn(X): return NearestNeighbors(metric="cosine", algorithm="brute").fit(X)
|
| 88 |
|
| 89 |
def _ensure_knn_index(index_max: int, batch_size: int, progress: gr.Progress | None = None):
|
| 90 |
-
"""Build (first run) or load a memmap + KNN over a
|
| 91 |
global _nn, _X, _labels_source, _dataset_for_labels
|
| 92 |
|
| 93 |
if _nn is not None and _X is not None:
|
|
@@ -99,7 +99,6 @@ def _ensure_knn_index(index_max: int, batch_size: int, progress: gr.Progress | N
|
|
| 99 |
_dataset_for_labels = dataset
|
| 100 |
N = len(dataset)
|
| 101 |
|
| 102 |
-
# load cache if exists with same N
|
| 103 |
if EMB_MEMMAP_PATH.exists() and KNN_META_PATH.exists():
|
| 104 |
meta = json.load(open(KNN_META_PATH))
|
| 105 |
if int(meta.get("N", -1)) == N:
|
|
@@ -109,12 +108,10 @@ def _ensure_knn_index(index_max: int, batch_size: int, progress: gr.Progress | N
|
|
| 109 |
_X = X; _labels_source = labels; _nn = _fit_knn(X)
|
| 110 |
return
|
| 111 |
|
| 112 |
-
# build tiny embedding index (batched)
|
| 113 |
model, preprocess = _load_openclip()
|
| 114 |
labels_mm = np.memmap(LABELS_MEMMAP_PATH, mode="w+", dtype="U32", shape=(N,))
|
| 115 |
X_w = None; D = None
|
| 116 |
|
| 117 |
-
step = 0
|
| 118 |
with torch.no_grad():
|
| 119 |
for start in range(0, N, batch_size):
|
| 120 |
end = min(start + batch_size, N)
|
|
@@ -130,7 +127,6 @@ def _ensure_knn_index(index_max: int, batch_size: int, progress: gr.Progress | N
|
|
| 130 |
for i in range(start, end):
|
| 131 |
try: labels_mm[i] = str(dataset[i]["qa"][0]["answer"] or "")
|
| 132 |
except Exception: labels_mm[i] = ""
|
| 133 |
-
step += 1
|
| 134 |
if progress: progress(((end)/N), desc=f"Building index {end}/{N}")
|
| 135 |
|
| 136 |
del X_w; gc.collect()
|
|
@@ -190,8 +186,22 @@ def analyze_face(image: Image.Image):
|
|
| 190 |
stress_pct, stress_lbl = stress_from_top3(top3)
|
| 191 |
return top3, f"{stress_pct}% ({stress_lbl})", q
|
| 192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
# -----------------------------
|
| 194 |
-
# Generator (optional
|
| 195 |
# -----------------------------
|
| 196 |
def _get_gen_pipe():
|
| 197 |
global _gen_pipe
|
|
@@ -207,7 +217,7 @@ def generate_synthetics(base_image: Image.Image, base_embed: np.ndarray, n_syn:
|
|
| 207 |
pipe = _get_gen_pipe()
|
| 208 |
base_gen = torch.Generator(device="cpu").manual_seed(42)
|
| 209 |
records = []
|
| 210 |
-
for
|
| 211 |
seed = int(torch.randint(0, 2**31 - 1, (1,), generator=base_gen).item())
|
| 212 |
gs = random.choice(GUIDANCE_SCALES)
|
| 213 |
g = torch.Generator(device="cpu").manual_seed(seed)
|
|
@@ -222,7 +232,7 @@ def generate_synthetics(base_image: Image.Image, base_embed: np.ndarray, n_syn:
|
|
| 222 |
return records[:NUM_SYN_TO_SHOW]
|
| 223 |
|
| 224 |
# -----------------------------
|
| 225 |
-
#
|
| 226 |
# -----------------------------
|
| 227 |
def _format_top3_for_table(top3: List[Dict]) -> List[List]:
|
| 228 |
return [[r["rank"], r["emotion"], r["confidence_pct"]] for r in top3]
|
|
@@ -231,8 +241,8 @@ with gr.Blocks(title="Face Emotions + Stress (CPU Fast)") as demo:
|
|
| 231 |
gr.Markdown(
|
| 232 |
"## Face Emotion & Stress Analyzer — CPU-friendly\n"
|
| 233 |
"- Embeddings: **laion/CLIP-ViT-H-14-laion2B-s32B-b79K** (open_clip)\n"
|
| 234 |
-
"-
|
| 235 |
-
"-
|
| 236 |
)
|
| 237 |
|
| 238 |
with gr.Row():
|
|
@@ -252,35 +262,66 @@ with gr.Blocks(title="Face Emotions + Stress (CPU Fast)") as demo:
|
|
| 252 |
)
|
| 253 |
stress_txt = gr.Label(label="Stress index (original)")
|
| 254 |
with gr.Column():
|
| 255 |
-
#
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
steps = gr.Slider(8, 30, value=STEPS_DEFAULT, step=2, label="Diffusion steps (higher = slower/better)")
|
| 258 |
gen_btn = gr.Button("Generate variations (optional)")
|
| 259 |
gal = gr.Gallery(label="Synthetic variations (click one)", columns=[5], height=220, preview=True)
|
| 260 |
-
syn_stress = gr.Label(label="Stress
|
| 261 |
syn_top3 = gr.JSON(label="Top-3 emotions (selected synthetic)")
|
| 262 |
|
| 263 |
status = gr.Markdown(visible=False)
|
| 264 |
|
| 265 |
-
#
|
| 266 |
-
syn_state = gr.State([])
|
| 267 |
-
q_state = gr.State(None)
|
| 268 |
-
img_state = gr.State(None)
|
| 269 |
|
|
|
|
| 270 |
def do_analyze(image: Image.Image, cap: int, batch: int, progress=gr.Progress(track_tqdm=True)):
|
| 271 |
try:
|
| 272 |
_ensure_knn_index(index_max=int(cap), batch_size=int(batch), progress=progress)
|
| 273 |
top3, stress, q = analyze_face(image)
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
except Exception as e:
|
| 276 |
-
return None, None, [], [], None, None, gr.update(visible=True, value=f"**Error:** {e}")
|
| 277 |
|
| 278 |
analyze_btn.click(
|
| 279 |
do_analyze,
|
| 280 |
inputs=[inp, idx_cap, bs],
|
| 281 |
-
outputs=[top3_tbl, stress_txt, gal, syn_state, q_state, img_state, status]
|
| 282 |
)
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
def do_generate(n: int, s: int, q, img, progress=gr.Progress()):
|
| 285 |
if q is None or img is None:
|
| 286 |
return [], [], gr.update(visible=True, value="**Error:** Analyze first."), None
|
|
@@ -297,6 +338,7 @@ with gr.Blocks(title="Face Emotions + Stress (CPU Fast)") as demo:
|
|
| 297 |
outputs=[gal, syn_state, status, syn_top3]
|
| 298 |
)
|
| 299 |
|
|
|
|
| 300 |
def on_gallery_select(evt: gr.SelectData, syn_records: List[Dict]):
|
| 301 |
if not syn_records or evt is None: return gr.update(value=None), gr.update(value=None)
|
| 302 |
i = int(evt.index); rec = syn_records[i]
|
|
|
|
| 13 |
from diffusers import StableDiffusionImageVariationPipeline
|
| 14 |
|
| 15 |
# -----------------------------
|
| 16 |
+
# Config (CPU-friendly)
|
| 17 |
# -----------------------------
|
| 18 |
DATASET_ID = "tukey/human_face_emotions_roboflow"
|
| 19 |
EMB_MODEL_NAME = "ViT-H-14" # open_clip model name
|
|
|
|
| 25 |
LABELS_MEMMAP_PATH = CACHE_DIR / "labels.U32.memmap"
|
| 26 |
KNN_META_PATH = CACHE_DIR / "knn_meta.json"
|
| 27 |
|
| 28 |
+
# tiny index + light generation
|
| 29 |
+
INDEX_MAX_DEFAULT = 80
|
| 30 |
BATCH_SIZE_DEFAULT = 32
|
| 31 |
N_SYN_DEFAULT = 3
|
| 32 |
STEPS_DEFAULT = 12
|
| 33 |
GUIDANCE_SCALES = [2.5, 3.0, 3.5, 4.0]
|
| 34 |
+
NUM_SYN_TO_SHOW = 5
|
| 35 |
|
| 36 |
DEVICE = "cuda" if torch.cuda.is_available() else ("mps" if hasattr(torch.backends, "mps") and torch.backends.mps.is_available() else "cpu")
|
| 37 |
|
| 38 |
# -----------------------------
|
| 39 |
+
# Canonical labels + stress
|
| 40 |
# -----------------------------
|
| 41 |
CANON = {"anger","disgust","fear","happy","neutral","sad","surprise","contempt"}
|
| 42 |
CANON_MAP = {
|
|
|
|
| 87 |
def _fit_knn(X): return NearestNeighbors(metric="cosine", algorithm="brute").fit(X)
|
| 88 |
|
| 89 |
def _ensure_knn_index(index_max: int, batch_size: int, progress: gr.Progress | None = None):
|
| 90 |
+
"""Build (first run) or load a tiny memmap + KNN over a subset of the dataset."""
|
| 91 |
global _nn, _X, _labels_source, _dataset_for_labels
|
| 92 |
|
| 93 |
if _nn is not None and _X is not None:
|
|
|
|
| 99 |
_dataset_for_labels = dataset
|
| 100 |
N = len(dataset)
|
| 101 |
|
|
|
|
| 102 |
if EMB_MEMMAP_PATH.exists() and KNN_META_PATH.exists():
|
| 103 |
meta = json.load(open(KNN_META_PATH))
|
| 104 |
if int(meta.get("N", -1)) == N:
|
|
|
|
| 108 |
_X = X; _labels_source = labels; _nn = _fit_knn(X)
|
| 109 |
return
|
| 110 |
|
|
|
|
| 111 |
model, preprocess = _load_openclip()
|
| 112 |
labels_mm = np.memmap(LABELS_MEMMAP_PATH, mode="w+", dtype="U32", shape=(N,))
|
| 113 |
X_w = None; D = None
|
| 114 |
|
|
|
|
| 115 |
with torch.no_grad():
|
| 116 |
for start in range(0, N, batch_size):
|
| 117 |
end = min(start + batch_size, N)
|
|
|
|
| 127 |
for i in range(start, end):
|
| 128 |
try: labels_mm[i] = str(dataset[i]["qa"][0]["answer"] or "")
|
| 129 |
except Exception: labels_mm[i] = ""
|
|
|
|
| 130 |
if progress: progress(((end)/N), desc=f"Building index {end}/{N}")
|
| 131 |
|
| 132 |
del X_w; gc.collect()
|
|
|
|
| 186 |
stress_pct, stress_lbl = stress_from_top3(top3)
|
| 187 |
return top3, f"{stress_pct}% ({stress_lbl})", q
|
| 188 |
|
| 189 |
+
# ----- Nearest neighbors images from dataset -----
|
| 190 |
+
def _get_dataset_image(i: int) -> Image.Image:
|
| 191 |
+
return _dataset_for_labels[int(i)]["image"].convert("RGB")
|
| 192 |
+
|
| 193 |
+
def nearest_k_images_from_dataset(q_emb: np.ndarray, k: int = 5):
|
| 194 |
+
dist, idx = _nn.kneighbors(q_emb.reshape(1, -1), n_neighbors=k)
|
| 195 |
+
dist, idx = dist[0], idx[0]
|
| 196 |
+
sims = (1.0 - dist).tolist()
|
| 197 |
+
out = []
|
| 198 |
+
for i, s in zip(idx, sims):
|
| 199 |
+
img = _get_dataset_image(int(i))
|
| 200 |
+
out.append((img, float(s), int(i)))
|
| 201 |
+
return out
|
| 202 |
+
|
| 203 |
# -----------------------------
|
| 204 |
+
# Generator (optional)
|
| 205 |
# -----------------------------
|
| 206 |
def _get_gen_pipe():
|
| 207 |
global _gen_pipe
|
|
|
|
| 217 |
pipe = _get_gen_pipe()
|
| 218 |
base_gen = torch.Generator(device="cpu").manual_seed(42)
|
| 219 |
records = []
|
| 220 |
+
for _ in progress.tqdm(range(n_syn), desc="Generating"):
|
| 221 |
seed = int(torch.randint(0, 2**31 - 1, (1,), generator=base_gen).item())
|
| 222 |
gs = random.choice(GUIDANCE_SCALES)
|
| 223 |
g = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
| 232 |
return records[:NUM_SYN_TO_SHOW]
|
| 233 |
|
| 234 |
# -----------------------------
|
| 235 |
+
# UI
|
| 236 |
# -----------------------------
|
| 237 |
def _format_top3_for_table(top3: List[Dict]) -> List[List]:
|
| 238 |
return [[r["rank"], r["emotion"], r["confidence_pct"]] for r in top3]
|
|
|
|
| 241 |
gr.Markdown(
|
| 242 |
"## Face Emotion & Stress Analyzer — CPU-friendly\n"
|
| 243 |
"- Embeddings: **laion/CLIP-ViT-H-14-laion2B-s32B-b79K** (open_clip)\n"
|
| 244 |
+
"- Optional SD variations: **lambdalabs/sd-image-variations-diffusers**\n"
|
| 245 |
+
"- Also shows **nearest 5 images from the dataset** for 1-click results.\n"
|
| 246 |
)
|
| 247 |
|
| 248 |
with gr.Row():
|
|
|
|
| 262 |
)
|
| 263 |
stress_txt = gr.Label(label="Stress index (original)")
|
| 264 |
with gr.Column():
|
| 265 |
+
# Nearest 5 from dataset (one-click examples)
|
| 266 |
+
nn_gal = gr.Gallery(
|
| 267 |
+
label="Nearest 5 from dataset (click one)",
|
| 268 |
+
columns=[5], height=220, preview=True
|
| 269 |
+
)
|
| 270 |
+
nn_stress = gr.Label(label="Stress (nearest image)")
|
| 271 |
+
nn_top3 = gr.JSON(label="Top-3 emotions (nearest image)")
|
| 272 |
+
|
| 273 |
+
# Optional generator
|
| 274 |
+
n_syn = gr.Slider(0, 5, value=N_SYN_DEFAULT, step=1, label="How many SD variations to generate")
|
| 275 |
steps = gr.Slider(8, 30, value=STEPS_DEFAULT, step=2, label="Diffusion steps (higher = slower/better)")
|
| 276 |
gen_btn = gr.Button("Generate variations (optional)")
|
| 277 |
gal = gr.Gallery(label="Synthetic variations (click one)", columns=[5], height=220, preview=True)
|
| 278 |
+
syn_stress = gr.Label(label="Stress (selected synthetic)")
|
| 279 |
syn_top3 = gr.JSON(label="Top-3 emotions (selected synthetic)")
|
| 280 |
|
| 281 |
status = gr.Markdown(visible=False)
|
| 282 |
|
| 283 |
+
# State
|
| 284 |
+
syn_state = gr.State([]) # generated variations
|
| 285 |
+
q_state = gr.State(None) # embedding of original image
|
| 286 |
+
img_state = gr.State(None) # original image
|
| 287 |
|
| 288 |
+
# ---- Analyze ----
|
| 289 |
def do_analyze(image: Image.Image, cap: int, batch: int, progress=gr.Progress(track_tqdm=True)):
|
| 290 |
try:
|
| 291 |
_ensure_knn_index(index_max=int(cap), batch_size=int(batch), progress=progress)
|
| 292 |
top3, stress, q = analyze_face(image)
|
| 293 |
+
|
| 294 |
+
# nearest 5 images from dataset
|
| 295 |
+
neigh = nearest_k_images_from_dataset(np.array(q, dtype=np.float32), k=5)
|
| 296 |
+
nn_items = [(im, f"sim={sim:.3f} • idx={idx}") for im, sim, idx in neigh]
|
| 297 |
+
|
| 298 |
+
# return: top3, stress, nn gallery, (empty SD gallery), syn_state, q, img, status
|
| 299 |
+
return (_format_top3_for_table(top3), stress,
|
| 300 |
+
nn_items, [], [], q, image, gr.update(visible=False))
|
| 301 |
except Exception as e:
|
| 302 |
+
return None, None, [], [], [], None, None, gr.update(visible=True, value=f"**Error:** {e}")
|
| 303 |
|
| 304 |
analyze_btn.click(
|
| 305 |
do_analyze,
|
| 306 |
inputs=[inp, idx_cap, bs],
|
| 307 |
+
outputs=[top3_tbl, stress_txt, nn_gal, gal, syn_state, q_state, img_state, status]
|
| 308 |
)
|
| 309 |
|
| 310 |
+
# ---- One-click on a nearest image ----
|
| 311 |
+
def on_nn_select(evt: gr.SelectData, q):
|
| 312 |
+
if q is None:
|
| 313 |
+
return gr.update(value="Analyze first"), None
|
| 314 |
+
neigh = nearest_k_images_from_dataset(np.array(q, dtype=np.float32), k=5)
|
| 315 |
+
i = max(0, min(int(evt.index), len(neigh)-1))
|
| 316 |
+
img, _, _ = neigh[i]
|
| 317 |
+
emb = embed_image(img)
|
| 318 |
+
top3 = _top3_emotions_weighted_from_embed(emb)
|
| 319 |
+
stress_pct, stress_lbl = stress_from_top3(top3)
|
| 320 |
+
return f"{stress_pct}% ({stress_lbl})", top3
|
| 321 |
+
|
| 322 |
+
nn_gal.select(fn=on_nn_select, inputs=[q_state], outputs=[nn_stress, nn_top3])
|
| 323 |
+
|
| 324 |
+
# ---- Optional: generate SD variations ----
|
| 325 |
def do_generate(n: int, s: int, q, img, progress=gr.Progress()):
|
| 326 |
if q is None or img is None:
|
| 327 |
return [], [], gr.update(visible=True, value="**Error:** Analyze first."), None
|
|
|
|
| 338 |
outputs=[gal, syn_state, status, syn_top3]
|
| 339 |
)
|
| 340 |
|
| 341 |
+
# select from generated synthetics
|
| 342 |
def on_gallery_select(evt: gr.SelectData, syn_records: List[Dict]):
|
| 343 |
if not syn_records or evt is None: return gr.update(value=None), gr.update(value=None)
|
| 344 |
i = int(evt.index); rec = syn_records[i]
|