Spaces:
Runtime error
Runtime error
update app.py with description and add description.html file
#1
by
hasibzunair
- opened
- app.py +5 -2
- description.html +24 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
-
import
|
4 |
import os
|
5 |
from PIL import Image
|
6 |
from ultralytics import YOLO
|
@@ -8,7 +8,8 @@ from ultralytics import YOLO
|
|
8 |
|
9 |
################## MODEL ##################
|
10 |
model = YOLO('best.pt')
|
11 |
-
title = "RSUD20K"
|
|
|
12 |
|
13 |
################## IMAGE ##################
|
14 |
|
@@ -31,6 +32,7 @@ def show_preds_image(image_path):
|
|
31 |
demo_image = gr.Interface(
|
32 |
fn=show_preds_image,
|
33 |
title=title,
|
|
|
34 |
inputs= inputs_image,
|
35 |
outputs= outputs_image,
|
36 |
examples= [os.path.join(Image_directory, fname) for fname in os.listdir(Image_directory) if fname.endswith(".jpg")],
|
@@ -69,6 +71,7 @@ def show_preds_video(video_path):
|
|
69 |
demo_video = gr.Interface(
|
70 |
fn=show_preds_video,
|
71 |
title=title,
|
|
|
72 |
inputs= inputs_video,
|
73 |
outputs= outputs_video,
|
74 |
examples= [os.path.join(Video_directory, fname) for fname in os.listdir(Video_directory) if fname.endswith(".mp4")],
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
+
import codecs
|
4 |
import os
|
5 |
from PIL import Image
|
6 |
from ultralytics import YOLO
|
|
|
8 |
|
9 |
################## MODEL ##################
|
10 |
model = YOLO('best.pt')
|
11 |
+
title = "RSUD20K: A Dataset for Road Scene Understanding In Autonomous Driving"
|
12 |
+
description = codecs.open("description.html", "r", "utf-8").read()
|
13 |
|
14 |
################## IMAGE ##################
|
15 |
|
|
|
32 |
demo_image = gr.Interface(
|
33 |
fn=show_preds_image,
|
34 |
title=title,
|
35 |
+
description=description,
|
36 |
inputs= inputs_image,
|
37 |
outputs= outputs_image,
|
38 |
examples= [os.path.join(Image_directory, fname) for fname in os.listdir(Image_directory) if fname.endswith(".jpg")],
|
|
|
71 |
demo_video = gr.Interface(
|
72 |
fn=show_preds_video,
|
73 |
title=title,
|
74 |
+
description=description,
|
75 |
inputs= inputs_video,
|
76 |
outputs= outputs_video,
|
77 |
examples= [os.path.join(Video_directory, fname) for fname in os.listdir(Video_directory) if fname.endswith(".mp4")],
|
description.html
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>Title</title>
|
6 |
+
</head>
|
7 |
+
<body>
|
8 |
+
Try this demo for an object detector trained on <a href="https://github.com/hasibzunair/RSUD20K">RSUD20K</a>,
|
9 |
+
introduced in our paper <a href="https://arxiv.org/abs/2401.07322">RSUD20K: A Dataset for Road Scene Understanding In Autonomous Driving</a>.
|
10 |
+
</br>
|
11 |
+
RSUD20K is a new object detection dataset for road scene understanding,
|
12 |
+
comprised of over 20K high-resolution images from the driving perspective
|
13 |
+
on Bangladesh roads, and includes 130K bounding box annotations for
|
14 |
+
13 objects.
|
15 |
+
</br>
|
16 |
+
You can use this demo to get the a bounding box and class label predictions of objects present in your images or videos. To use it, simply
|
17 |
+
upload an image or video of your choice and hit submit. You will get one or more bounding boxes and names of objects present
|
18 |
+
in your images or videos from this list:
|
19 |
+
(person, rickshaw, rickshaw van, auto rickshaw, truck, pickup truck, private car, motorcycle, bicycle, bus, micro bus, covered van, human hauler)
|
20 |
+
</br>
|
21 |
+
<a href="https://www.kaggle.com/datasets/hasibzunair/rsud20k-bangladesh-road-scene-understanding">Dataset Page</a>
|
22 |
+
</br>
|
23 |
+
</body>
|
24 |
+
</html>
|