File size: 2,521 Bytes
099c56e
ad4e03a
099c56e
ad4e03a
 
099c56e
5b53652
 
 
 
 
 
 
 
 
77a1b68
5b53652
 
 
 
5a0b3dd
1323c4c
5b53652
 
 
 
 
 
5a0b3dd
5b53652
 
 
 
4d66906
5b53652
505069b
ad4e03a
 
 
 
 
 
 
 
 
 
 
 
 
 
5b53652
505069b
 
5b53652
 
 
 
 
 
 
 
 
 
 
 
 
4d2674e
505069b
9d6871d
 
ad4e03a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
"""
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
"""

import random
import json

import torch

from model import NeuralNet
from nltk_utils import bag_of_words, tokenize

device = torch.device("cpu")
with open('./intents.json', 'r') as json_data:
    intents = json.load(json_data)

FILE = "./data.pth"
data = torch.load(FILE)
model_state = torch.load("chatmodel.pth", map_location=torch.device('cpu'))

input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
#model_state = data["model_state"]

model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
#test
def predict(sentence, history=[]):
    history =[]
    """
    # tokenize the new input sentence
    new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    # generate a response 
    history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()

    # convert the tokens to text, and then split the responses into the right format
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # convert to tuples of list
    """

    sentence1 = tokenize(sentence)
    X = bag_of_words(sentence1, all_words)
    X = X.reshape(1, X.shape[0])
    X = torch.from_numpy(X).to(device)

    output = model(X)
    _, predicted = torch.max(output, dim=1)

    tag = tags[predicted.item()]

    probs = torch.softmax(output, dim=1)
    prob = probs[0][predicted.item()]
    if prob.item() > 0.75:
        for intent in intents['intents']:
            if tag == intent["tag"]:
                reply = [random.choice(intent['responses'])]
    history.append((sentence, reply))
    response = [(history[i], history[i+1]) for i in range(0, len(history)-1, 2)] 
    return history, response

import gradio as gr

gr.Interface(fn=predict,
             theme="default",
             css=".footer {display:none !important}",
             inputs=["text", "state"],
             outputs=["chatbot", "state"]).launch()