Spaces:
Build error
Build error
Commit
·
5b53652
1
Parent(s):
8138fa1
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,35 @@ import torch
|
|
| 4 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 5 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 6 |
"""
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
"""
|
| 9 |
# tokenize the new input sentence
|
| 10 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
|
@@ -19,7 +47,25 @@ def predict(input, history=[]):
|
|
| 19 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
| 20 |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
| 21 |
"""
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
import gradio as gr
|
| 25 |
|
|
|
|
| 4 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 5 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 6 |
"""
|
| 7 |
+
|
| 8 |
+
import random
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
from model import NeuralNet
|
| 14 |
+
from nltk_utils import bag_of_words, tokenize
|
| 15 |
+
|
| 16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 17 |
+
|
| 18 |
+
with open('./intents.json', 'r') as json_data:
|
| 19 |
+
intents = json.load(json_data)
|
| 20 |
+
|
| 21 |
+
FILE = "./data.pth"
|
| 22 |
+
data = torch.load(FILE)
|
| 23 |
+
|
| 24 |
+
input_size = data["input_size"]
|
| 25 |
+
hidden_size = data["hidden_size"]
|
| 26 |
+
output_size = data["output_size"]
|
| 27 |
+
all_words = data['all_words']
|
| 28 |
+
tags = data['tags']
|
| 29 |
+
model_state = data["model_state"]
|
| 30 |
+
|
| 31 |
+
model = NeuralNet(input_size, hidden_size, output_size).to(device)
|
| 32 |
+
model.load_state_dict(model_state)
|
| 33 |
+
model.eval()
|
| 34 |
+
|
| 35 |
+
def predict(sentence, history=[]):
|
| 36 |
"""
|
| 37 |
# tokenize the new input sentence
|
| 38 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
|
|
|
| 47 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
| 48 |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
| 49 |
"""
|
| 50 |
+
|
| 51 |
+
sentence = tokenize(sentence)
|
| 52 |
+
X = bag_of_words(sentence, all_words)
|
| 53 |
+
X = X.reshape(1, X.shape[0])
|
| 54 |
+
X = torch.from_numpy(X).to(device)
|
| 55 |
+
|
| 56 |
+
output = model(X)
|
| 57 |
+
_, predicted = torch.max(output, dim=1)
|
| 58 |
+
|
| 59 |
+
tag = tags[predicted.item()]
|
| 60 |
+
|
| 61 |
+
probs = torch.softmax(output, dim=1)
|
| 62 |
+
prob = probs[0][predicted.item()]
|
| 63 |
+
if prob.item() > 0.75:
|
| 64 |
+
for intent in intents['intents']:
|
| 65 |
+
if tag == intent["tag"]:
|
| 66 |
+
reply = random.choice(intent['responses'])
|
| 67 |
+
|
| 68 |
+
return reply, history
|
| 69 |
|
| 70 |
import gradio as gr
|
| 71 |
|