File size: 1,385 Bytes
4450c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from transformers import AutoModelForCausalLM
from accelerate import dispatch_model


def _device_map(num_gpus, num_layers):
    per_gpu_layers = (num_layers + 2) / num_gpus

    device_map = {
        'transformer.wte': 0,
        'transformer.ln_f': 0,
        'lm_head': num_gpus-1
    }

    used = 1
    gpu_target = 0
    for i in range(num_layers):
        if used >= per_gpu_layers:
            gpu_target += 1
            used = 0 if gpu_target < num_gpus-1 else 1
        assert gpu_target < num_gpus
        device_map[f'transformer.h.{i}'] = gpu_target
        used += 1

    return device_map


def load_model_on_gpus(model_name_or_path, num_gpus: int = 2):
    num_devices = torch.cuda.device_count()

    if num_gpus == 1:
        model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map='auto',
                                                     trust_remote_code=True).eval()
    elif 1 < num_gpus <= num_devices:
        model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map='cpu',
                                                     trust_remote_code=True).eval()
        num_layers = model.config.num_hidden_layers
        device_map = _device_map(num_gpus, num_layers)
        print(device_map)
        model = dispatch_model(model, device_map=device_map)
    else:
        raise KeyError

    return model