File size: 19,284 Bytes
8627a70 f4d95d8 8627a70 b667dc2 97d7e59 8627a70 b667dc2 8627a70 b667dc2 51b9b31 b667dc2 f4d95d8 8627a70 b667dc2 8627a70 b667dc2 8627a70 f4d95d8 8627a70 d5581cc 8627a70 b667dc2 8627a70 b667dc2 d5581cc 8627a70 51b9b31 8627a70 b667dc2 8627a70 b667dc2 8627a70 b667dc2 51b9b31 b667dc2 8627a70 f4d95d8 8627a70 ea81237 8627a70 b667dc2 8627a70 f4d95d8 8627a70 b667dc2 8627a70 b667dc2 8627a70 3d7a66f 92c92ae 3d7a66f 92c92ae 3d7a66f 92c92ae 8627a70 f4d95d8 8627a70 f4d95d8 8627a70 f4d95d8 8627a70 f4d95d8 8627a70 f4d95d8 51b9b31 f4d95d8 8627a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import json
import re
import os
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objs as go
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
import streamlit.components.v1 as components
from datetime import datetime
from urllib.parse import quote
from pathlib import Path
import re
import html
from typing import Dict, Any
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena-L2", "WorkArena-L3", "MiniWoB", "WebLINX", "AssistantBench"]
def sanitize_agent_name(agent_name):
# Only allow alphanumeric chars, hyphen, underscore
if agent_name.startswith('.'):
raise ValueError("Agent name cannot start with a dot")
if not re.match("^[a-zA-Z0-9-_][a-zA-Z0-9-_.]*$", agent_name):
raise ValueError("Invalid agent name format")
return agent_name
def safe_path_join(*parts):
# Ensure we stay within results directory
base = Path("results").resolve()
try:
path = base.joinpath(*parts).resolve()
if not str(path).startswith(str(base)):
raise ValueError("Path traversal detected")
return path
except Exception:
raise ValueError("Invalid path")
def sanitize_column_name(col: str) -> str:
"""Sanitize column names for HTML display"""
return html.escape(str(col))
def sanitize_cell_value(value: Any) -> str:
if isinstance(value, (int, float)):
return str(value)
if isinstance(value, str) and 'Β±' in value:
score, std_err = value.split('Β±')
return f'{score.strip()} <span style="font-size: smaller; color: var(--lighter-color);">Β±{std_err.strip()}</span>'
return html.escape(str(value))
def create_html_table_main(df):
col1, col2 = st.columns([2,6])
with col1:
sort_column = st.selectbox("Sort by", df.columns.tolist(), index=df.columns.tolist().index("WebArena"), key="main_sort_column")
with col2:
sort_order = st.radio("Order", ["Ascending", "Descending"], index=1, horizontal=True, key="main_sort_order")
def get_sort_value(row):
if row == "-":
return float('-inf')
else:
try:
return float(row)
except ValueError:
return row
# Sort dataframe
if sort_order == "Ascending":
df = df.sort_values(by=sort_column, key=lambda x: x.apply(get_sort_value))
else:
df = df.sort_values(by=sort_column, ascending=False, key=lambda x: x.apply(get_sort_value))
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for col in df.columns:
if col == "Agent":
html += f'<td>{row[col]}</td>'
else:
html += f'<td>{sanitize_cell_value(row[col])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def create_html_table_benchmark(df, benchmark):
col1, col2 = st.columns([2,6])
with col1:
sort_column = st.selectbox("Sort by", df.columns.tolist(), index=df.columns.tolist().index("Score"), key=f"benchmark_sort_column_{benchmark}")
with col2:
sort_order = st.radio("Order", ["Ascending", "Descending"], index=1, horizontal=True, key=f"benchmark_sort_order_{benchmark}")
def get_sort_value(row):
if row == "-":
return float('-inf')
else:
try:
return float(row)
except ValueError:
return row
# Sort dataframe
if sort_order == "Ascending":
df = df.sort_values(by=sort_column, key=lambda x: x.apply(get_sort_value))
else:
df = df.sort_values(by=sort_column, ascending=False, key=lambda x: x.apply(get_sort_value))
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
if column == "Reproduced_all" or column == "std_err":
continue
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for column in df.columns:
if column == "Reproduced":
if row[column] == "-":
html += f'<td>{sanitize_cell_value(row[column])}</td>'
else:
summary = sanitize_cell_value(row[column])
details = "<br>".join(map(sanitize_cell_value, row["Reproduced_all"]))
html += f'<td><details><summary>{summary}</summary>{details}</details></td>'
elif column == "Reproduced_all" or column == "std_err":
continue
elif column == "Score":
score_with_std_err = f'{row[column]} Β± {row["std_err"]}'
html += f'<td>{sanitize_cell_value(score_with_std_err)}</td>'
else:
html += f'<td>{sanitize_cell_value(row[column])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def check_sanity(agent):
try:
safe_agent = sanitize_agent_name(agent)
for benchmark in BENCHMARKS:
file_path = safe_path_join(safe_agent, f"{benchmark.lower()}.json")
if not file_path.is_file():
continue
original_count = 0
with open(file_path) as f:
results = json.load(f)
for result in results:
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
return False
if result["agent_name"] != agent:
return False
if result["benchmark"] != benchmark:
return False
if result["original_or_reproduced"] == "Original":
original_count += 1
if original_count != 1:
return False
return True
except ValueError:
return False
def main():
st.set_page_config(page_title="BrowserGym Leaderboard", layout="wide", initial_sidebar_state="expanded")
st.markdown("""
<style>
:root {
--lighter-color: #888; /* Default for light theme */
}
@media (prefers-color-scheme: dark) {
:root {
--lighter-color: #ccc; /* Default for dark theme */
}
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<head>
<meta http-equiv="Content-Security-Policy"
content="default-src 'self' https://huggingface.co;
script-src 'self' 'unsafe-inline';
style-src 'self' 'unsafe-inline';
img-src 'self' data: https:;
frame-ancestors 'none';">
<meta http-equiv="X-Frame-Options" content="DENY">
<meta http-equiv="X-Content-Type-Options" content="nosniff">
<meta http-equiv="Referrer-Policy" content="strict-origin-when-cross-origin">
</head>
""", unsafe_allow_html=True)
all_agents = os.listdir("results")
all_results = {}
for agent in all_agents:
if not check_sanity(agent):
st.error(f"Results for {agent} are not in the correct format.")
continue
agent_results = []
for benchmark in BENCHMARKS:
file_path = safe_path_join(agent, f"{benchmark.lower()}.json")
if not file_path.is_file():
continue
with open(file_path) as f:
agent_results.extend(json.load(f))
all_results[agent] = agent_results
st.title("π BrowserGym Leaderboard")
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
# content = create_yall()
tabs = st.tabs(["π Main Leaderboard",] + BENCHMARKS + ["π About"])
with tabs[0]:
# Leaderboard tab
def get_leaderboard_dict(results):
leaderboard_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
for benchmark in BENCHMARKS:
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
else:
result_dict[benchmark] = "-"
leaderboard_dict.append(result_dict)
return leaderboard_dict
leaderboard_dict = get_leaderboard_dict(all_results)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(leaderboard_dict)
df = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
for benchmark in BENCHMARKS:
df[benchmark] = df[benchmark].apply(lambda x: f"{x:.2f}" if x != "-" else "-")
df[benchmark] = df[benchmark].astype(str)
# Add a search bar
search_query = st.text_input("Search agents", "", key="search_main")
# Filter the DataFrame based on the search query
if search_query:
df = df[df['Agent'].str.contains(search_query, case=False)]
# Display the filtered DataFrame or the entire leaderboard
def make_hyperlink(agent_name):
try:
safe_name = sanitize_agent_name(agent_name)
safe_url = f"https://huggingface.co/spaces/ServiceNow/browsergym-leaderboard/blob/main/results/{quote(safe_name)}/README.md"
return f'<a href="{html.escape(safe_url)}" target="_blank">{html.escape(safe_name)}</a>'
except ValueError:
return ""
df['Agent'] = df['Agent'].apply(make_hyperlink)
html_table = create_html_table_main(df)
st.markdown(html_table, unsafe_allow_html=True)
if st.button("Export to CSV", key="export_main"):
# Export the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a link to download the CSV file
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
with tabs[-1]:
st.markdown('''
# BrowserGym Leaderboard
This leaderboard tracks performance of various agents on web navigation tasks.
## How to Submit Results for New Agents
### 1. Create Results Directory
Create a new folder in the `results` directory with your agent's name:
```bash
results/
βββ your-agent-name/
βββ README.md
βββ webarena.json
βββ workarena-l1.json
βββ workarena++-l2.json
βββ workarena++-l3.json
βββ miniwob.json
```
### 2. Add Agent Details
Create a `README.md` in your agent's folder with the following details:
#### Required Information
- **Model Name**: Base model used (e.g., GPT-4, Claude-2)
- **Model Architecture**: Architecture details and any modifications
- **Input/Output Format**: How inputs are processed and outputs generated
- **Training Details**: Training configuration if applicable
- Dataset used
- Number of training steps
- Hardware used
- Training time
#### Optional Information
- **Paper Link**: Link to published paper/preprint if available
- **Code Repository**: Link to public code implementation
- **Additional Notes**: Any special configurations or requirements
- **License**: License information for your agent
Make sure to organize the information in clear sections using Markdown.
### 3. Add Benchmark Results
Create separate JSON files for each benchmark following this format:
```json
[
{
"agent_name": "your-agent-name",
"study_id": "unique-study-identifier-from-agentlab",
"date_time": "YYYY-MM-DD HH:MM:SS",
"benchmark": "WebArena",
"score": 0.0,
"std_err": 0.0,
"benchmark_specific": "Yes/No",
"benchmark_tuned": "Yes/No",
"followed_evaluation_protocol": "Yes/No",
"reproducible": "Yes/No",
"comments": "Additional details",
"original_or_reproduced": "Original"
}
]
```
Please add all the benchmark files in separate json files named as follows:
- `webarena.json`
- `workarena-l1.json`
- `workarena-l2.json`
- `workarena-l3.json`
- `miniwob.json`
Each file must contain a JSON array with a single object following the format above. The benchmark field in each file must match the benchmark name exactly ([`WebArena`, `WorkArena-L1`, `WorkArena-L2`, `WorkArena-L3`, `MiniWoB`]) and benchmark_lowercase.json as the filename.
### 4. Submit PR
1. Open the community tab and press "New Pull Request"
2. Give it a new title to the PR and follow the steps mentioned
3. Publish the branch
## How to Submit Reproducibility Results for Existing Agents
Open the results file for the agent and benchmark you reproduced the results for.
### 1. Add reproduced results
Append the following entry in the json file. Ensure you set `original_or_reproduced` as `Reproduced`.
```json
[
{
"agent_name": "your-agent-name",
"study_id": "unique-study-identifier-from-agentlab",
"date_time": "YYYY-MM-DD HH:MM:SS",
"benchmark": "WebArena",
"score": 0.0,
"std_err": 0.0,
"benchmark_specific": "Yes/No",
"benchmark_tuned": "Yes/No",
"followed_evaluation_protocol": "Yes/No",
"reproducible": "Yes/No",
"comments": "Additional details",
"original_or_reproduced": "Reproduced"
}
]
```
### 2. Submit PR
1. Open the community tab and press "New Pull Request"
2. Give it a new title to the PR and follow the steps mentioned
3. Publish the branch
## License
MIT
''')
for i, benchmark in enumerate(BENCHMARKS, start=1):
with tabs[i]:
def get_benchmark_dict(results, benchmark):
benchmark_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
flag = 0
for value in values:
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
result_dict["Score"] = value["score"]
result_dict["std_err"] = value["std_err"]
result_dict["Benchmark Specific"] = value["benchmark_specific"]
result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
result_dict["Reproducible"] = value["reproducible"]
result_dict["Comments"] = value["comments"]
result_dict["Study ID"] = value["study_id"]
value["date_time"] = datetime.strptime(value["date_time"], "%Y-%m-%d %H:%M:%S").strftime("%B %d, %Y %I:%M %p")
result_dict["Date"] = value["date_time"]
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
flag = 1
if not flag:
result_dict["Score"] = "-"
result_dict["std_err"] = "-"
result_dict["Benchmark Specific"] = "-"
result_dict["Benchmark Tuned"] = "-"
result_dict["Followed Evaluation Protocol"] = "-"
result_dict["Reproducible"] = "-"
result_dict["Comments"] = "-"
result_dict["Study ID"] = "-"
result_dict["Date"] = "-"
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
result_dict["Reproduced"].append(value["score"])
value["date_time"] = datetime.strptime(value["date_time"], "%Y-%m-%d %H:%M:%S").strftime("%B %d, %Y %I:%M %p")
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
if result_dict["Reproduced"]:
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
else:
result_dict["Reproduced"] = "-"
benchmark_dict.append(result_dict)
return benchmark_dict
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(benchmark_dict)
df_ = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df_ = pd.concat(dfs_to_concat, ignore_index=True)
df_['Score'] = df_['Score'].apply(lambda x: f"{x:.2f}" if x != "-" else "-")
df_['std_err'] = df_['std_err'].apply(lambda x: f"{x:.1f}" if x != "-" else "-")
df_['Score'] = df_['Score'].astype(str)
html_table = create_html_table_benchmark(df_, benchmark)
st.markdown(html_table, unsafe_allow_html=True)
if __name__ == "__main__":
main()
|